Veröffentlichungen

Veröffentlichungen in Zeitschriften, Büchern und auf Konferenzen

Zeitschriften, Bücher, Konferenzen

  1. 2024

    1. H. Lotfi u. a., „A Four-Channel BiCMOS Transmitter for a Quantum Magnetometer Based on Nitrogen-Vacancy Centers in Diamond“, IEEE Journal of Solid-State Circuits, Bd. 59, Nr. 5, Art. Nr. 5, Mai 2024, doi: 10.1109/JSSC.2024.3350995.
    2. L. Marti u. a., „Towards optical MAS magnetic resonance using optical traps“, Journal of Magnetic Resonance Open, Bd. 18, S. 100145, 2024, doi: https://doi.org/10.1016/j.jmro.2023.100145.
    3. Q. Yang u. a., „A chip-based C-band ODNP platform“, Journal of Magnetic Resonance, Bd. 358, S. 107603, Jan. 2024, doi: 10.1016/j.jmr.2023.107603.
  2. 2023

    1. A. Chu, M. Kern, K. Khan, K. LiPS, und J. Anders, „A 263GHz 32-Channel EPR-on-a-Chip Injection-Locked VCO-Array“, in 2023 IEEE International Solid- State Circuits Conference (ISSCC), in 2023 IEEE International Solid- State Circuits Conference (ISSCC). Feb. 2023, S. 20–22. doi: 10.1109/ISSCC42615.2023.10067623.
    2. F. Dreyer, D. Krüger, S. Baas, A. Velders, und J. Anders, „A 5-780-MHz Transceiver ASIC for Multinuclear NMR Spectroscopy in 0.13-µm BiCMOS“, IEEE Transactions on Circuits and Systems I: Regular Papers, Bd. 70, S. 3484–3496, Sep. 2023, doi: 10.1109/TCSI.2023.3279495.
    3. F. Dreyer, Q. Yang, B. Alnajjar, D. Krüger, B. Blümich, und J. Anders, „A portable chip-based NMR relaxometry system with arbitrary phase control for point-of-care blood analysis“, IEEE Transactions on Biomedical Circuits and Systems (Early Access), S. 1–12, 2023, doi: 10.1109/TBCAS.2023.3287281.
    4. M. Kern, T. Klotz, M. Spiess, P. Mavridis, B. Blümich, und J. Anders, „Dead Time-Free Detection of NMR Signals Using Voltage-Controlled Oscillators“, Applied Magnetic Resonance, Aug. 2023, doi: 10.1007/s00723-023-01599-8.
    5. K. Khan, M. A. Hassan, M. Kern, und J. Anders, „A 12.2 − 14.9 GHz amplitude-sensitive VCO-based EPR-on-a-chip detector achieving a spin sensitivity of 6 × 109 spins/ √ Hz“, in 2023 18th European Microwave Integrated Circuits Conference (EuMIC), in 2023 18th European Microwave Integrated Circuits Conference (EuMIC). IEEE, Sep. 2023. doi: 10.23919/eumic58042.2023.10288693.
    6. H. Lotfi u. a., „A Diamond Quantum Magnetometer Based on a Chip-Integrated 4-way Transmitter in 130-nm SiGe BiCMOS“, in 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), in 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). Juni 2023, S. 253–256. doi: 10.1109/RFIC54547.2023.10186184.
  3. 2022

    1. A. Buchau und J. Anders, „CHARACTERIZATION OF VECTOR FIELDS BASED ON AN ANALYSIS OF THEIR LOCAL EXPANSIONS“, in WIT Transactions on Engineering Sciences, A. Cheng, Hrsg., in WIT Transactions on Engineering Sciences, vol. 134. WIT Press, Aug. 2022, S. 17–29. doi: 10.2495/be450021.
    2. F. Dreyer, D. Krüger, S. Baas, A. Velders, und J. Anders, „A broadband transceiver ASIC for X-nuclei NMR spectroscopy in 0.13 $\mu$m BiCMOS“, in 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), in 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS). IEEE, 2022, S. 65--69.
    3. F. Dreyer, D. Krüger, S. Baas, A. Velders, und J. Anders, „A broadband transceiver ASIC for X-nuclei NMR spectroscopy in 0.13 µm BiCMOS“, in 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), in 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS). IEEE, 2022, S. 65--69.
    4. F. Dreyer, Q. Yang, D. Krüger, und J. Anders, „A chip-based NMR relaxometry system for point-of-care analysis“, 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS), S. 183–187, 2022.
    5. T. Elrifai, A. Sakr, H. Lotfi, M. A. Hassan, K. Lips, und J. Anders, „A 7 GHz VCO-based EPR spectrometer incorporating a UWB data link“, in 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), in 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS). Juni 2022, S. 280–284. doi: 10.1109/NEWCAS52662.2022.9842254.
    6. H. S. Funk u. a., „Composition and magnetic properties of thin films grown by interdiffusion of Mn and Sn-Rich, Ge lattice matched SixGe1-x-ySny layers“, Journal of Magnetism and Magnetic Materials, Bd. 546, S. 168731, März 2022, doi: 10.1016/j.jmmm.2021.168731.
    7. M. A. Hassan u. a., „Towards single-cell pulsed EPR using VCO-based EPR-on-a-chip detectors“, Frequenz, Bd. 76, Nr. 11–12, Art. Nr. 11–12, 2022, doi: doi:10.1515/freq-2022-0096.
    8. K. Khan u. a., „A 12.2 to 14.9 GHz injection-locked VCO array with an on-chip 50 MHz BW semi-digital PLL for transient spin manipulation and detection“, in 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS), in 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS). Aug. 2022, S. 1–4. doi: 10.1109/MWSCAS54063.2022.9859288.
    9. H. Lotfi, M. A. Hassan, M. Kern, und J. Anders, „A Compact C-band EPR-on-a-chip Transceiver in 130-nm SiGe BiCMOS“, in 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), in 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME). Juni 2022, S. 157–160. doi: 10.1109/PRIME55000.2022.9816822.
    10. A. Mohamed, L. Baumgärtner, J. Zhao, D. Djekic, und J. Anders, „A current-mode Σ∆ modulator with FIR feedback and DC servo loop for an improved dynamic range“, in 2022 IEEE International Symposium on Circuits and Systems (ISCAS), in 2022 IEEE International Symposium on Circuits and Systems (ISCAS). 2022, S. 1–5.
    11. A. Mohamed, M. Wagner, H. Heidari, und J. Anders, „A frontend for magnetoresistive sensors with a 2.2 pA/√Hz low-noise current source“, IEEE Solid-State Circuits Letters, S. 1–1, 2022, doi: 10.1109/LSSC.2022.3148362.
    12. A. Mohamed und J. Anders, „An ultra-low-noise frontend for magnetoresistive sensors“, EUROPRACTICE activity report 2021 - 2022, S. 48–49, März 2022, [Online]. Verfügbar unter: https://europractice-ic.com/wp-content/uploads/2022/03/europractice_ar2021_web_150dpi.pdf
    13. A. Sakr, M. A. Hassan, K. Khan, M. Kern, und J. Anders, „A distributed amplitude control loop for VCO-array-based EPR-on-a-chip detectors“, in 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), in 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME). Juni 2022, S. 13–16. doi: 10.1109/PRIME55000.2022.9816840.
    14. Q. Yang, J. Zhao, F. Dreyer, D. Krüger, und J. Anders, „A portable NMR platform with arbitrary phase control and temperature compensation“, Magnetic Resonance, Bd. 3, Nr. 1, Art. Nr. 1, 2022.
    15. Q. Yang, J. Zhao, F. Dreyer, D. Krüger, und J. Anders, „A CMOS-based NMR platform with arbitrary phase control and temperature compensation“, Magnetic Resonance, Bd. 3, Nr. 1, Art. Nr. 1, 2022, doi: 10.5194/mr-3-77-2022.
    16. J. Zhao, Q. Yang, F. Dreyer, D. Krüger, F. Jelezko, und J. Anders, „A Broadband NMR Magnetometer System with Field Searching and Automatic Tuning Function“, IEEE Transactions on Instrumentation and Measurement, 2022, doi: 10.1109/TIM.2022.3222484.
  4. 2021

    1. J. Abella u. a., „Security, Reliability and Test Aspects of the RISC-V Ecosystem“, in 2021 IEEE European Test Symposium (ETS), in 2021 IEEE European Test Symposium (ETS). Mai 2021, S. 1–10. doi: 10.1109/ETS50041.2021.9465449.
    2. B. M. K. Alnajjar, A. Buchau, L. Baumgärtner, und J. Anders, „NMR magnets for portable applications using 3D printed materials“, Bd. 326, S. 106934, Mai 2021, doi: 10.1016/j.jmr.2021.106934.
    3. B. M. K. Alnajjar, A. Buchau, L. Baumgártner, und J. Anders, „NMR magnets for portable applications using 3D printed materials“, Journal of Magnetic Resonance, S. 106934, Feb. 2021, doi: 10.1016/j.jmr.2021.106934.
    4. J. Anders, „spins-to-go – Miniaturisierte magnetresonanzspektrometer Die Kernspinresonanzspektroskopie“, 2021, doi: 10.26125/HTFF-4J02.
    5. J. Anders, F. Dreyer, D. Krüger, I. Schwartz, M. B. Plenio, und F. Jelezko, „Progress in miniaturization and low-field nuclear magnetic resonance“, Journal of Magnetic Resonance, Bd. 322, S. 106860, 2021, doi: 10.1016/j.jmr.2020.106860.
    6. J. Anders, F. Dreyer, D. Krüger, I. Schwartz, M. B. Plenio, und F. Jelezko, „Progress in miniaturization and low-field nuclear magnetic resonance“, Bd. 322, S. 106860, Jan. 2021, doi: 10.1016/j.jmr.2020.106860.
    7. B. Blümich und J. Anders, „When the MOUSE leaves the house“, Bd. 2, Nr. 1, Art. Nr. 1, Apr. 2021, doi: 10.5194/mr-2-149-2021.
    8. A. Buchau, „ACCURACY ANALYSIS OF THE FAST MULTIPOLE METHOD FOR THREE-DIMENSIONAL BOUNDARY VALUE PROBLEMS BASED ON LAPLACE’S EQUATION“, in WIT Transactions on Engineering Sciences, A. H.-D. Cheng, Hrsg., in WIT Transactions on Engineering Sciences, vol. 131. WIT Press, Aug. 2021, S. 3–15. doi: 10.2495/be440011.
    9. H. Bürkle, T. Klotz, R. Krapf, und J. Anders, „A 0.1 MHz to 200 MHz high-voltage CMOS transceiver for portable NMR systems with a maximum output current of 2.0 A<inf>pp</inf>“, in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC). Sep. 2021, S. 327–330. doi: 10.1109/ESSCIRC53450.2021.9567823.
    10. Y. Chae, Y.-S. Shu, J. Anders, V. Schaffer, T. Oshima, und M. Corsi, „F2: Pushing the Frontiers in Accuracy for Data Converters and Analog Circuits“, in 2021 IEEE International Solid- State Circuits Conference (ISSCC), in 2021 IEEE International Solid- State Circuits Conference (ISSCC), vol. 64. Feb. 2021, S. 517–519. doi: 10.1109/ISSCC42613.2021.9365818.
    11. A. Chu u. a., „On the modeling of amplitude-sensitive electron spin resonance (ESR) detection using voltage-controlled oscillator (VCO)-based ESR-on-a-chip detectors“, Magnetic Resonance, Bd. 2, Nr. 2, Art. Nr. 2, Sep. 2021, doi: 10.5194/mr-2-699-2021.
    12. D. Djekic, M. Häberle, A. Mohamed, L. Baumgärtner, und J. Anders, „A 440-kOhm to 150-GOhm Tunable Transimpedance Amplifier Based on Multi-Element Pseudo-Resistors“, in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC). Sep. 2021, S. 1–4.
    13. F. Dreyer, D. Krüger, und J. Anders, „Breitbandiger Transceiver ASIC für heteronukleare NMR Spektroskopie“, in MikroSystemTechnik Kongress 2021, in MikroSystemTechnik Kongress 2021. VDE Verlag, 2021, S. 258–261.
    14. M. Elsobky, A. Mohamed, T. Deuble, J. Anders, und J. Burghartz, „A 12-to-15 b, 100-to-25 kS/s Resolution Reconfigurable, Power Scalable Incremental ADC using Ultra-Thin Chips“, IEEE Sensors Letters, S. 1–1, 2021, doi: 10.1109/LSENS.2021.3051259.
    15. A. V. Funes u. a., „Single Molecule Magnet Features in the Butterfly CoIII2LnIII2 Pivalate Family with Alcohol-Amine Ligands“, European Journal of Inorganic Chemistry, Bd. 2021, Nr. 31, Art. Nr. 31, 2021, doi: https://doi.org/10.1002/ejic.202100467.
    16. M. A. Hassan, T. Elrifai, A. Sakr, M. Kern, K. Lips, und J. Anders, „A 14-channel 7 GHz VCO-based EPR-on-a-chip sensor with rapid scan capabilities“, in 2021 IEEE Sensors, in 2021 IEEE Sensors. Okt. 2021, S. 1–4. doi: 10.1109/SENSORS47087.2021.9639513.
    17. D. Krüger, F. Dreyer, M. Kern, und J. Anders, „An S-band EPR-on-a-chip Receiver in 0.13 µm BiCMOS“, in 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), in 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). Nov. 2021, S. 1–5. doi: 10.1109/ICECS53924.2021.9665504.
    18. D. Krüger, F. Dreyer, M. Kern, und J. Anders, „An S-band EPR-on-a-chip Receiver in 0.13 μm BiCMOS“, in 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), in 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). IEEE, Nov. 2021, S. 1–5. doi: 10.1109/ICECS53924.2021.9665504.
    19. D. Krüger, F. Dreyer, M. Kern, und J. Anders, „An S-band EPR-on-a-chip Receiver in <tex>$0.13\,\mum$</tex> BiCMOS“, in 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), in 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). Nov. 2021, S. 1–5. doi: 10.1109/ICECS53924.2021.9665504.
    20. S. Künstner u. a., „Rapid-scan electron paramagnetic resonance using an EPR-on-a-Chip sensor“, Bd. 2, Nr. 2, Art. Nr. 2, Aug. 2021, doi: 10.5194/mr-2-673-2021.
    21. S. M. Leitao u. a., „Time-resolved scanning ion conductance microscopy for three-dimensional tracking of nanoscale cell surface dynamics“, bioRxiv, 2021, doi: 10.1101/2021.05.13.444009.
    22. A. Mohamed, D. Djekic, L. Baumgärtner, und J. Anders, „Noise-aware design methodology of ultra-low-noise transimpedance amplifiers“, in ICECS 2021 - 28th IEEE International Conference on Electronics Circuits and Systems (ICECS), in ICECS 2021 - 28th IEEE International Conference on Electronics Circuits and Systems (ICECS). Nov. 2021, S. 1–4.
    23. A. Mohamed, H. Heidari, und J. Anders, „A readout circuit for tunnel magnetoresistive sensors employing an ultra-low-noise current source“, in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC). Sep. 2021.
    24. A. Sakr, M. A. Hassan, und J. Anders, „A 93.1-dB SFDR, 90.3-dB DR, and 1-MS/s CT Incremental Sigma-Delta Modulator Incorporating a Resistive Dual-RTZ FIR DAC“, in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC). Sep. 2021, S. 211–214. doi: 10.1109/ESSCIRC53450.2021.9567762.
    25. L. Tesi u. a., „Plasmonic Metasurface Resonators to Enhance Terahertz Magnetic Fields for High-Frequency Electron Paramagnetic Resonance“, Small Methods, S. 2100376, Juli 2021, doi: 10.1002/smtd.202100376.
    26. D. Weißhaupt u. a., „Weak localization and weak antilocalization in doped Ge 1- y Sn y layers with up to 8% Sn“, Journal of Physics: Condensed Matter, Bd. 33, Nr. 8, Art. Nr. 8, 2021, doi: 10.1088/1361-648X/abcb68.
  5. 2020

    1. J. Anders, F. Dreyer, und D. Krüger, „On-Chip Nuclear Magnetic Resonance“, in Handbook of Biochips: Integrated Circuits and Systems for Biology and Medicine, M. Sawan, Hrsg., in Handbook of Biochips: Integrated Circuits and Systems for Biology and Medicine. , New York, NY: Springer New York, 2020, S. 1--32. doi: 10.1007/978-1-4614-6623-9_23-1.
    2. M. Brunet Cabré, D. Djekic, T. Romano, N. Hanna, J. Anders, und K. McKelvey, „Microscale Electrochemical Cell on a Custom CMOS Transimpedance Amplifier for High Temporal Resolution Single Entity Electrochemistry**“, ChemElectroChem, Bd. 7, Nr. 23, Art. Nr. 23, 2020, doi: https://doi.org/10.1002/celc.202001083.
    3. M. Brunet Cabré, D. Djekic, T. Romano, N. Hanna, J. Anders, und K. McKelvey, „Cover Feature: Microscale Electrochemical Cell on a Custom CMOS Transimpedance Amplifier for High Temporal Resolution Single Entity Electrochemistry (ChemElectroChem 23/2020)“, ChemElectroChem, Bd. 7, Nr. 23, Art. Nr. 23, 2020, doi: https://doi.org/10.1002/celc.202001360.
    4. H. Bürkle, K. Schmid, T. Klotz, R. Krapf, und J. Anders, „A High Voltage CMOS Transceiver for Low-Field NMR with a Maximum Output Current of 1.4 App“, in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), in 2020 IEEE International Symposium on Circuits and Systems (ISCAS). Okt. 2020, S. 1–5. doi: 10.1109/ISCAS45731.2020.9181025.
    5. H. Bürkle, K. Schmid, T. Klotz, R. Krapf, und J. Anders, „A High Voltage CMOS Transceiver for Low-Field NMR with a Maximum Output Current of 1.4 A<inf>pp</inf>“, in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), in 2020 IEEE International Symposium on Circuits and Systems (ISCAS). Okt. 2020, S. 1–5. doi: 10.1109/ISCAS45731.2020.9181025.
    6. M. Eder u. a., „A Signal Acquisition Setup for Ultrashort Echo Time Imaging Operating in Parallel on Unmodified Clinical MRI Scanners Achieving an Acquisition Delay of  $3~\mus$“, IEEE Transactions on Medical Imaging, Bd. 39, Nr. 1, Art. Nr. 1, Jan. 2020, doi: 10.1109/TMI.2019.2924057.
    7. L. Gohlke, F. Dreyer, M. P. Álvarez, und J. Anders, „An IoT based low-cost heart rate measurement system employing PPG sensors“, in 2020 IEEE SENSORS, in 2020 IEEE SENSORS. Okt. 2020, S. 1–4. doi: 10.1109/SENSORS47125.2020.9278844.
    8. L. Gohlke, F. Dreyer, M. P. Alvarez, und J. Anders, „An IoT based low-cost heart rate measurement system employing PPG sensors“, in 2020 IEEE Sensors, in 2020 IEEE Sensors. IEEE, 2020, S. 1--4. doi: 10.1109/SENSORS47125.2020.9278844.
    9. M. Kern u. a., „Hybrid Spintronic Materials from Conducting Polymers with Molecular Quantum Bits“, Advanced Functional Materials, 2020, doi: 10.1002/adfm.202006882.
    10. A. Mohamed und J. Anders, „Stability Analysis of Incremental ΣΔ Modulators using Mixed-Logic Dynamical Systems and Optimal Control Theory“, in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), in 2020 IEEE International Symposium on Circuits and Systems (ISCAS). Okt. 2020, S. 1–5. doi: 10.1109/ISCAS45731.2020.9180952.
    11. A. Mohamed, M. Schmid, A. Tanwear, H. Heidari, und J. Anders, „A Low Noise CMOS Sensor Frontend for a TMR-based Biosensing Platform“, in 2020 IEEE SENSORS Conference, in 2020 IEEE SENSORS Conference. Okt. 2020.
    12. D. Neusser, C. Malacrida, M. Kern, Y. M. Gross, J. van Slageren, und S. Ludwigs, „High Conductivities of Disordered P3HT Films by an Electrochemical Doping Strategy“, Chemistry of Materials, Bd. 32, Nr. 14, Art. Nr. 14, Juli 2020, doi: 10.1021/acs.chemmater.0c01293.
    13. I. Polian u. a., „Exploring the mysteries of system-level test.“, in to appear in Proceedings of the 29th IEEE Asian Test Symposium (ATS’20), in to appear in Proceedings of the 29th IEEE Asian Test Symposium (ATS’20). Nov. 2020.
    14. J. Zhao, A. Mohamed, und J. Anders, „An Active CMOS NMR Field Probe with Custom Transceiver and ΣΔ Modulator ASICs and an Optical Link“, in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), in 2020 IEEE International Symposium on Circuits and Systems (ISCAS). Okt. 2020, S. 1–5. doi: 10.1109/ISCAS45731.2020.9181026.
  6. 2019

    1. B. M. K. Alnajjar, A. Buchau, J. Anders, und B. Blümich, „An H-shaped low-field magnet for NMR spectroscopy designed using the finite element method“, International Journal of Applied Electromagnetics and Mechanics, Bd. 60, S. S3–S14, Mai 2019, doi: 10.3233/JAE-191101.
    2. J. Anders und K. Lips, „MR to go“, Journal of Magnetic Resonance, Bd. 306, S. 118–123, 2019, doi: 10.1016/j.jmr.2019.07.007.
    3. A. Buchau, „Precise and Robust Magnetic Field Computations for High-End Smart Sensor Applications“, in Boundary Elements and other Mesh Reduction Methods XLII, in Boundary Elements and other Mesh Reduction Methods XLII. WIT Press, Southampton UK, Sep. 2019. doi: 10.2495/be420071.
    4. H. Elmar, K. Leonhard, und K. M. K. U. Hassan, „Digital-Analog-Umsetzer mit in Reihe geschalteten Kapazitäten“, DE: 10 2018 206 453.9, 2019
    5. M. Eschelbach u. a., „Comparison of prospective head motion correction with NMR field probes and an optical tracking system“, Magnetic Resonance in Medicine, Bd. 81, Nr. 1, Art. Nr. 1, 2019, doi: 10.1002/mrm.27343.
    6. J. Handwerker u. a., „A CMOS NMR needle for probing brain physiology with high spatial and temporal resolution“, Nature Methods, Bd. 17, Nr. 1, Art. Nr. 1, Nov. 2019, doi: 10.1038/s41592-019-0640-3.
    7. H. Heidari, P. Mak, J. Anders, und D. Hall, „Guest Editorial Special Issue on Magnetic Sensing Systems for Biomedical Application“, IEEE Sensors Journal, Bd. 19, Nr. 20, Art. Nr. 20, Okt. 2019, doi: 10.1109/JSEN.2019.2929887.
    8. A. Horneff u. a., „A New CMOS Broadband, High Impedance LNA for MRI Achieving an Input Referred Voltage Noise Spectral Density of 200pV/Hz√“, in 2019 IEEE International Symposium on Circuits and Systems (ISCAS), in 2019 IEEE International Symposium on Circuits and Systems (ISCAS). Mai 2019, S. 1–5. doi: 10.1109/ISCAS.2019.8702445.
    9. J. Hrubý u. a., „A graphene-based hybrid material with quantum bits prepared by the double Langmuir–Schaefer method“, RSC Adv., Bd. 9, Nr. 42, Art. Nr. 42, 2019, doi: 10.1039/C9RA04537F.
    10. M. Häberle u. a., „Comparison of Different Precision Pseudo Resistor Realizations in the DC-Feedback of Capacitive Transimpedance Amplifiers“, in 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), in 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS). Nov. 2019, S. 699–702. doi: 10.1109/ICECS46596.2019.8965196.
    11. A. Köllner u. a., „A 2x2 Pixel Array Camera based on a Backside Illuminated Ge-on-Si Photodetector“, in 2019 IEEE SENSORS, in 2019 IEEE SENSORS. Okt. 2019, S. 1–4. doi: 10.1109/SENSORS43011.2019.8956731.
    12. P. Lu u. a., „Introduction to the Special Issue on the 2019 IEEE European Solid-State Circuits Conference (ESSCIRC)“, IEEE Solid-State Circuits Letters, Bd. 2, Nr. 9, Art. Nr. 9, Sep. 2019, doi: 10.1109/LSSC.2019.2944716.
    13. R. Magnall u. a., „Photolytic and Reductive Activations of 2-Arsaethynolate in a Uranium–Triamidoamine Complex: Decarbonylative Arsenic-Group Transfer Reactions and Trapping of a Highly Bent and Reduced Form“, Chemistry - A European Journal, Bd. 25, Nr. 62, Art. Nr. 62, 2019, doi: 10.1002/chem.201903973.
    14. A. Mohamed, A. Sakr, und J. Anders, „FIR Feedback in Continuous- Time Incremental Sigma-Delta ADCs“, in 2019 17th IEEE International New Circuits and Systems Conference (NEWCAS), in 2019 17th IEEE International New Circuits and Systems Conference (NEWCAS). Juni 2019, S. 1–4. doi: 10.1109/NEWCAS44328.2019.8961214.
    15. B. Schlecker, A. Hoffmann, A. Chu, M. Ortmanns, K. Lips, und J. Anders, „Towards Low-Cost, High-Sensitivity Point-of-Care Diagnostics Using VCO-Based ESR-on-a-Chip Detectors“, IEEE Sensors Journal, Bd. 19, Nr. 20, Art. Nr. 20, Okt. 2019, doi: 10.1109/JSEN.2018.2875767.
    16. M. Spiess, A. Buchau, und J. Anders, „Precision finite element method simulations of a chip-integrated magnetic resonance coil for in-situ MR applications“, in 2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG), in 2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG). Juli 2019, S. 1–4. doi: 10.1109/COMPUMAG45669.2019.9032724.
  7. 2018

    1. A. AlMarashli, J. Anders, J. Becker, und M. Ortmanns, „A Nyquist Rate SAR ADC Employing Incremental Sigma Delta DAC Achieving Peak SFDR = 107 dB at 80 kS/s“, IEEE Journal of Solid-State Circuits, Bd. 53, Nr. 5, Art. Nr. 5, Mai 2018, doi: 10.1109/JSSC.2017.2776299.
    2. S. Bader, M. Ortmanns, und J. Anders, „Nonlinear Energy-Efficient Noise-Aware Design of CMOS LC Tank Oscillators“, 2018 Ieee International Symposium on Circuits and Systems (Iscas), 2018, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000451218703083
    3. S. Bechler u. a., „Formation of Mn5Ge3 by thermal annealing of evaporated Mn on doped Ge on Si(111)“, Semiconductor Science and Technology, Bd. 33, Nr. 9, Art. Nr. 9, 2018, doi: 10.1088/1361-6641/aad4cf.
    4. A. Buchau und M. Jüttner, „A concept of separated numerical formulations for the solution and evaluation of complex field problems“, International Journal of Computational Methods and Experimental Measurements, Bd. 6, Nr. 6, Art. Nr. 6, Jan. 2018, doi: 10.2495/cmem-v6-n6-1008-1018.
    5. A. Chu, B. Schlecker, K. Lips, M. Ortmanns, und J. Anders, „An 8-channel 13GHz ESR-on-a-Chip injection-locked vco-array achieving 200μM-concentration sensitivity“, in 2018 IEEE International Solid - State Circuits Conference - (ISSCC), in 2018 IEEE International Solid - State Circuits Conference - (ISSCC). Feb. 2018, S. 354–356. doi: 10.1109/ISSCC.2018.8310330.
    6. D. Djekic, G. Fantner, K. Lips, M. Ortmanns, und J. Anders, „A 0.1% THD, 1-M $Ømega$  to 1-G $Ømega$  Tunable, Temperature-Compensated Transimpedance Amplifier Using a Multi-Element Pseudo-Resistor“, IEEE Journal of Solid-State Circuits, Bd. 53, Nr. 7, Art. Nr. 7, Juli 2018, doi: 10.1109/JSSC.2018.2820701.
    7. S. Grabmaier, M. Jüttner, und W. Rucker, „Coupling of finite element method and integral formulation for vector Helmholtz equation“, Compel : international journal for computation and mathematics in electrical and electronic engineering, Bd. 37, Nr. 4, SI, Art. Nr. 4, SI, 2018, doi: 10.1108/COMPEL-08-2017-0346.
    8. M. Haberle, D. Djekic, G. E. Fantner, K. Lips, M. Ortmanns, und J. Anders, „An integrator-differentiator TIA using a multi-element pseudo-resistor in its DC servo loop for enhanced noise performance“, Esscirc 2018 - Ieee 44th European Solid State Circuits Conference (Esscirc), S. 294–297, 2018, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000448159800077
    9. A. Horneff u. a., „An EM Simulation-Based Design Flow for Custom-Built MR Coils Incorporating Signal and Noise“, IEEE Transactions on Medical Imaging, Bd. 37, Nr. 2, Art. Nr. 2, Feb. 2018, doi: 10.1109/TMI.2017.2764160.
    10. M. Häberle, D. Djekic, G. E. Fantner, K. Lips, M. Ortmanns, und J. Anders, „An Integrator-Differentiator TIA Using a Multi-Element Pseudo-Resistor in its DC Servo Loop for Enhanced Noise Performance“, in ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC), in ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC). Sep. 2018, S. 294–297. doi: 10.1109/ESSCIRC.2018.8494290.
    11. F. Moro u. a., „Room Temperature Uniaxial Magnetic Anisotropy Induced By Fe-Islands in the InSe Semiconductor Van Der Waals Crystal“, Advanced Science, Bd. 5, Nr. 7, Art. Nr. 7, 2018, doi: 10.1002/advs.201800257.
    12. P. Neugebauer u. a., „Ultra-broadband EPR spectroscopy in field and frequency domains“, Phys. Chem. Chem. Phys., Bd. 20, Nr. 22, Art. Nr. 22, 2018, doi: 10.1039/C7CP07443C.
    13. M. Rajabzadeh, D. Djekic, M. Haeberle, J. Becker, J. Anders, und M. Ortmanns, „Comparison Study of Integrated Potentiostats: Resistive-TIA, Capacitive-TIA, CT ΣΔ Modulator“, in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), in 2018 IEEE International Symposium on Circuits and Systems (ISCAS). Mai 2018, S. 1–5. doi: 10.1109/ISCAS.2018.8351029.
    14. M. Rajabzadeh, D. Djekic, M. Haeberle, J. Becker, J. Anders, und M. Ortmanns, „Comparison Study of Integrated Potentiostats: Resistive-TIA, Capacitive-TIA, CT Sigma Delta Modulator“, 2018 Ieee International Symposium on Circuits and Systems (Iscas), 2018, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000451218700141
    15. D. Vögeli, S. Grabmaier, M. Jüttner, M. Weyrich, P. Göhner, und W. M. Rucker, „Intelligent and Distributed Solving of Multiphysics Problems Coordinated by Software Agents - An Intelligent Approach for Decentralized Simulations“, in Proceedings of the 10th International Conference on Agents and Artificial Intelligence, in Proceedings of the 10th International Conference on Agents and Artificial Intelligence, vol. 1. SCITEPRESS - Science and Technology Publications, 2018, S. 200–207. doi: 10.5220/0006590402000207.
    16. P. Zhang u. a., „Exchange coupling and single molecule magnetism in redox-active tetraoxolene-bridged dilanthanide complexes“, Chem. Sci., Bd. 9, Nr. 5, Art. Nr. 5, 2018, doi: 10.1039/C7SC04873D.
    17. A. Øwre, M. Vinum, M. Kern, J. van Slageren, J. Bendix, und M. Perfetti, „Chiral, Heterometallic Lanthanide–Transition Metal Complexes by Design“, Inorganics, Bd. 6, Nr. 3, Art. Nr. 3, Juli 2018, doi: 10.3390/inorganics6030072.
  8. 2017

    1. A. AlMarashli, J. Anders, J. Becker, und M. Ortmanns, „A 107 dB SFDR, 80 kS/s Nyquist-rate SAR ADC using a hybrid capacitive and incremental ΣΔ DAC“, in 2017 Symposium on VLSI Circuits, in 2017 Symposium on VLSI Circuits. Juni 2017, S. C240–C241. doi: 10.23919/VLSIC.2017.8008494.
    2. A. AlMarashli, J. Anders, J. Becker, und M. Ortmanns, „A 107 dB SFDR, 80 kS/s Nyquist-rate SAR ADC using a hybrid capacitive and incremental Sigma Delta DAC“, 2017 Symposium on Vlsi Circuits, S. C240–C241, 2017, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000428759000093
    3. J. Anders u. a., „A-245 dB FOM 48 fs rms jitter semi-digital PLL with intrinsic temperature compensation in 130 nm CMOS“, 2017 Ieee Asian Solid-State Circuits Conference (a-Sscc), S. 325–328, 2017, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000426511300082
    4. A. Buchau und W. M. Rucker, „A meshfree isosurface computation method for boundary element methods“, International Journal of Computational Methods and Experimental Measurements, Bd. 5, Nr. 5, Art. Nr. 5, Juni 2017, doi: 10.2495/cmem-v5-n5-647-658.
    5. J. Chi, J. Wagner, J. Anders, und M. Ortmanns, „Digital interferer suppression and jitter reduction in continuous-time bandpass ΣΔ modulators“, in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), in 2017 IEEE International Symposium on Circuits and Systems (ISCAS). Mai 2017, S. 1–4. doi: 10.1109/ISCAS.2017.8050482.
    6. J. Z. Chi, J. Wagner, J. Anders, und M. Ortmanns, „Digital Interferer Suppression and Jitter Reduction in Continuous-Time Bandpass Sigma Delta Modulators“, 2017 Ieee International Symposium on Circuits and Systems (Iscas), 2017, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000424890101003
    7. D. Djekic, G. Fantner, J. Behrends, K. Lips, M. Ortmanns, und J. Anders, „A transimpedance amplifier using a widely tunable PVT-independent pseudo-resistor for high-performance current sensing applications“, in ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference, in ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference. Sep. 2017, S. 79–82. doi: 10.1109/ESSCIRC.2017.8094530.
    8. F. Dreyer u. a., „Schottky-Fotodioden basierend auf laserkristallisierten Germanium-Schichten“, in Kleinheubacher Tagung, U.R.S.I. Landesausschuss in der Bundesrepublik Deutschland e.V, in Kleinheubacher Tagung, U.R.S.I. Landesausschuss in der Bundesrepublik Deutschland e.V. Miltenberg, Germany, 2017, S. KH2017-Di-D2-04.
    9. S. Grabmaier, M. Jüttner, und W. M. Rucker, „Coupling of Finite Element Method and Integral Formulation for Vector Helmholtz Equation“, in ISTET, in ISTET. Ilmenau, 2017.
    10. M. Haas, B. Schweizer, J. Anders, und M. Ortmanns, „A miniaturized UWB antenna for implantable data telemetry“, in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Juli 2017, S. 1086–1089. doi: 10.1109/EMBC.2017.8037016.
    11. J. Handwerker, M. Perez-Rodas, M. Ortmanns, K. Scheffler, und J. Anders, „Towards CMOS-based In-vivo NMR Spectroscopy and Microscopy“, 2017 Ieee International Symposium on Circuits and Systems (Iscas), S. 2–5, 2017, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000424890100002
    12. J. Handwerker, B. Schlecker, M. Ortmanns, und J. Anders, „Integrated Circuit Technology for Next Generation Point-of-Care Spectroscopy Applications“, IEEE Communications Magazine, Bd. 55, Nr. 10, Art. Nr. 10, Okt. 2017, doi: 10.1109/MCOM.2017.1700092.
    13. S. A. Jawed, S. S. Afridi, M. A. Anjum, und K. Khan, „IO circuit design for 2.5 D through-silicon-interposer interconnects“, International Journal of Circuit Theory and Applications, Bd. 45, Nr. 3, Art. Nr. 3, 2017.
    14. S. A. Jawed u. a., „A configurable 2-Gbps LVDS transceiver in 150-nm CMOS with pre-emphasis, equalization, and slew rate control“, International Journal of Circuit Theory and Applications, Bd. 45, Nr. 10, Art. Nr. 10, 2017.
    15. M. Jüttner u. a., „A Distributed Method for Transient Simulations that Dynamically Considers Suplementary Results from Autonomous Software Agents“, in ISTET, in ISTET. Ilmenau, 2017.
    16. A. V. Matheoud u. a., „Single-chip electron spin resonance detectors operating at 50 GHz, 92 GHz, and 146 GHz“, Journal of Magnetic Resonance, Bd. 278, S. 113–121, 2017, doi: 10.1016/j.jmr.2017.03.013.
    17. I. Nemec, R. Herchel, M. Kern, P. Neugebauer, J. van Slageren, und Z. Trávnícek, „Magnetic anisotropy and field-induced slow relaxation of magnetization in tetracoordinate Co$^II$ compound Co(CH$_3$(-im)$_2$Cl$_2$“, Materials, Bd. 10, Nr. 3, Art. Nr. 3, 2017, doi: 10.3390/ma10030249.
    18. M. Ostroushko, A. Buchau, und W. M. Rucker, „Design and simulation of the electromagnetic heating of a biological tissue“, COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN  ELECTRICAL AND ELECTRONIC ENGINEERING, Bd. 36, Nr. 2, Art. Nr. 2, 2017, doi: 10.1108/COMPEL-05-2016-0220.
    19. B. Schlecker u. a., „VCO-based ESR-on-a-chip as a tool for low-cost, high-sensitivity point-of-care diagnostics“, 2017 Ieee Sensors, S. 88–90, 2017, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000427677500030
    20. B. Schlecker u. a., „Live Demonstration: A VCO-based point-of-care ESR spectrometer“, 2017 Ieee Sensors, S. 473–473, 2017, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000427677500163
    21. D. Vögeli u. a., „Softwareagenten zur zuverlässigen Durchführung dezentraler multiphysikalischer Simulationen“, at - Automatisierungstechnik, Bd. 65, Nr. 11, Art. Nr. 11, Nov. 2017, doi: 10.1515/auto-2017-0065.
    22. M. Wick, M. Jüttner, und W. M. Rucker, „Harmonic balanced Jiles-Atherton hysteresis implementation for finite element simulation“, Compel : international journal for computation and mathematics in electrical and electronic engineering, Bd. 36, Nr. 5, Art. Nr. 5, 2017, doi: 10.1108/COMPEL-02-2017-0098.
    23. D. Yasser, M. A. ElGamal, M. Atef, O. Hamada, A. H. Hassan, und H. Mostafa, „A comparative analysis of optimized low-power comparators for biomedical-ADCs“, in 2017 29th International Conference on Microelectronics (ICM), in 2017 29th International Conference on Microelectronics (ICM). 2017, S. 1–4.
  9. 2016

    1. A. AlMarashli, J. Anders, und M. Ortmanns, „A hybrid comparator for high resolution SAR ADC“, in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), in 2016 IEEE International Symposium on Circuits and Systems (ISCAS). Mai 2016, S. 1050–1053. doi: 10.1109/ISCAS.2016.7527424.
    2. J. Anders, J. Handwerker, M. Ortmanns, und G. Boero, „A low-power high-sensitivity single-chip receiver for NMR microscopy“, Journal of Magnetic Resonance, Bd. 266, S. 41–50, 2016, doi: 10.1016/j.jmr.2016.03.004.
    3. J. Becker, J. Anders, und M. Ortmanns, „A Continuous-Time Field Programmable Analog Array with 1 GHz GBW“, 23rd Ieee International Conference on Electronics Circuits and Systems (Icecs 2016), S. 209–212, 2016, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000399230200053
    4. J. Chi, R. Ritter, J. Wagner, J. Anders, und M. Ortmanns, „Phase noise vs. jitter analysis in continuous-time LP and BP ΣΔ modulators with interferers“, in 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), in 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS). Dez. 2016, S. 476–479. doi: 10.1109/ICECS.2016.7841242.
    5. J. Z. Chi, R. Ritter, J. Wagner, J. Anders, und M. Ortmanns, „Phase Noise vs. Jitter Analysis in Continuous-Time LP and BP Sigma triangle Modulators with Interferers“, 23rd Ieee International Conference on Electronics Circuits and Systems (Icecs 2016), S. 476–479, 2016, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000399230200125
    6. D. Djekic, M. Ortmanns, G. Fantner, und J. Anders, „A Tunable, Robust Pseudo-Resistor with Enhanced Linearity for Scanning Ion-Conductance Microscopy“, 2016 Ieee International Symposium on Circuits and Systems (Iscas), S. 842–845, 2016, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000390094700218
    7. M. Dörfel u. a., „Torque-Detected Electron Spin Resonance as a Tool to Investigate Magnetic Anisotropy in Molecular Nanomagnets“, Magnetochemistry, Bd. 2, Nr. 2, Art. Nr. 2, 2016, doi: 10.3390/magnetochemistry2020025.
    8. A. Elkafrawy, J. Anders, und M. Ortmanns, „Design and validation of a 10-bit current mode SAR ADC with 58.4 dB SFDR at 50 MS/s in 90 nm CMOS“, Analog Integrated Circuits and Signal Processing, Bd. 89, Nr. 2, Art. Nr. 2, 2016, doi: 10.1007/s10470-016-0788-z.
    9. S. Grabmaier, H. Li, M. Jüttner, und W. M. Rucker, „Efficient Magnetic Field Calculation based on a novel Domain Decomposition Approach“, in 17th International IGTE Symposium, in 17th International IGTE Symposium. Graz, Austria, 2016, S. 102–108.
    10. M. Haas, J. Anders, und M. Ortmanns, „A bidirectional neural interface featuring a tunable recorder and electrode impedance estimation“, in 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS), in 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS). Okt. 2016, S. 372–375. doi: 10.1109/BioCAS.2016.7833809.
    11. M. Haas, U. Bihr, J. Anders, und M. Ortmanns, „A bidirectional neural interface IC with high voltage compliance and spectral separation“, in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), in 2016 IEEE International Symposium on Circuits and Systems (ISCAS). Mai 2016, S. 2743–2746. doi: 10.1109/ISCAS.2016.7539160.
    12. J. Handwerker u. a., „An Array of Fully-Integrated Quadrature TX/RX NMR Field Probes for MRI Trajectory Mapping“, Esscirc Conference 2016, S. 217–220, 2016, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000386656300052
    13. J. Handwerker, B. Schlecker, U. Wachter, P. Radermacher, M. Ortmanns, und J. Anders, „28.2 A 14GHz battery-operated point-of-care ESR spectrometer based on a 0.13µm CMOS ASIC“, in 2016 IEEE International Solid-State Circuits Conference (ISSCC), in 2016 IEEE International Solid-State Circuits Conference (ISSCC). Jan. 2016, S. 476–477. doi: 10.1109/ISSCC.2016.7418114.
    14. J. Handwerker, B. Schlecker, U. Wachter, P. Radermacher, M. Ortmanns, und J. Anders, „A 14GHz Battery-Operated Point-of-Care ESR Spectrometer Based on a 0.13 mu m CMOS ASIC“, 2016 Ieee International Solid-State Circuits Conference (Isscc), Bd. 59, S. 476-U670, 2016, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000382151400198
    15. M. Jüttner, A. Buchau, D. Vögeli, W. M. Rucker, und P. Göhner, „Iterative Software Agent Based Solution of Multiphysics Problems“, in Scientific Computing in Electrical Engineering, A. Bartel, M. Clemens, M. Günther, und E. J. W. ter Maten, Hrsg., in Scientific Computing in Electrical Engineering. Cham: Springer International Publishing, 2016, S. 123--131.
    16. M. Jüttner, S. Grabmaier, D. Vögeli, W. M. Rucker, und P. Göhner, „Coupled Multiphysics Problems as Market Place for Competing Autonomous Software Agents“, in 17th Biennial Conference on Electromagnetic Field Computation (CEFC) 13.-16.11.2016 Florida, USA, in 17th Biennial Conference on Electromagnetic Field Computation (CEFC) 13.-16.11.2016 Florida, USA. IEEE, 2016. doi: 10.1109/CEFC.2016.7815942.
    17. R. Koerner u. a., „The Zener-Emitter: A novel superluminescent Ge optical waveguide-amplifier with 4.7 dB gain at 92 mA based on free-carrier modulation by direct Zener tunneling monolithically integrated on Si“, in 2016 IEEE International Electron Devices Meeting (IEDM), in 2016 IEEE International Electron Devices Meeting (IEDM). Dez. 2016, S. 22.5.1-22.5.4. doi: 10.1109/IEDM.2016.7838474.
    18. H. Li und W. M. Rucker, „A Hybrid Method for the Calculation of the Inductances of Coils with and without deformed Turns“, COMPEL, Bd. 35, Nr. 4, Art. Nr. 4, 2016.
    19. H. Li und W. M. Rucker, „An Accurate and Efficient Hybrid Method for the Calculation of the Equivalent Capacitance of an Arbitrary-Shaped Coil“, IEEE Transactions on Magnetics, Bd. 52, Nr. 3, Art. Nr. 3, März 2016.
    20. A. S. Sakr, A. H. Madian, und S. H. Ismail, „Full implementation of a capacitance-to-digital converter system based on SAR logic and charge redistribution technique“, in 2016 28th International Conference on Microelectronics (ICM), in 2016 28th International Conference on Microelectronics (ICM). Dez. 2016, S. 245–248. doi: 10.1109/ICM.2016.7847861.
    21. J. Wagner, S. Reich, R. Ritter, J. Anders, und M. Ortmanns, „Finite GBW in single OpAmp CT ΣΔ modulators“, in 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), in 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS). Dez. 2016, S. 468–471. doi: 10.1109/ICECS.2016.7841240.
    22. J. Wagner, S. Reich, R. Ritter, J. Anders, und M. Ortmanns, „Finite GBW in Single OpAmp CT Sigma Delta Modulators“, 23rd Ieee International Conference on Electronics Circuits and Systems (Icecs 2016), S. 468–471, 2016, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000399230200123
    23. M. Wick, M. Jüttner, und W. M. Rucker, „Fourier Transform based Analysis of Harmonic Nonlinear Magnetic Fields“, in 10th International Symposium on Electric and Magnetic Fields, in 10th International Symposium on Electric and Magnetic Fields. Lyon, France, 2016.
  10. 2015

    1. A. AlMarashli, J. Anders, und M. Ortmanns, „Design study on a SAR ADC using an incremental ΣΔ-DAC“, in 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), in 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME). Juni 2015, S. 172–175. doi: 10.1109/PRIME.2015.7251362.
    2. A. AlMarashli, J. Anders, und M. Ortmanns, „Design study on a SAR ADC using an incremental Sigma Delta-DAC“, 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (Prime), S. 172–175, 2015, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000380398700044
    3. A. Buchau und W. M. Rucker, „Meshfree computation of field lines across multiple domains using fast boundary element methods“, IEEE Transactions on Magnetics, Bd. 51, Nr. 3, Art. Nr. 3, März 2015, doi: 10.1109/TMAG.2014.2359520.
    4. A. Buchau und W. M. Rucker, „Feasibility of a meshfree post-processing for boundary element methods“, in Boundary Elements and Other Mesh Reduction Methods XXXVIII, A. H.-D. Cheng und C. A. Brebbia, Hrsg., in Boundary Elements and Other Mesh Reduction Methods XXXVIII. WIT Press, Sep. 2015, S. 327–338. doi: 10.2495/bem380261.
    5. C. Chu, J. Anders, J. Becker, und M. Ortmanns, „Finite GBW compensation technique for CT ΔΣ modulators with differentiator based ELD compensation“, in 2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS), in 2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS). Juni 2015, S. 1–4. doi: 10.1109/NEWCAS.2015.7182112.
    6. C. Chu, J. Anders, J. Becker, und M. Ortmanns, „Finite GBW Compensation Technique for CT Delta Sigma Modulators with Differentiator Based ELD Compensation“, 2015 Ieee 13th International New Circuits and Systems Conference (Newcas), 2015, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000380523300135
    7. A. Elkafrawy, J. Anders, und M. Ortmanns, „A 10-bit Reference Free Current Mode SAR ADC with 58.4 dB SFDR at 50 MS/s in 90 nm CMOS“, 2015 Nordic Circuits and Systems Conference (Norcas) - Norchip & International Symposium on System-on-Chip (Soc), 2015, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000380441400002
    8. A. Elkafrawy, J. Anders, und M. Ortmanns, „A 10-bit 150 MS/s Current Mode SAR ADC in 90 nm CMOS“, 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (Prime), S. 274–277, 2015, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000380398700070
    9. S. Fahmy, M. Dietl, P. Sareen, M. Ortmanns, und J. Anders, „A BW-tracking semi-digital PLL with near-optimal VCO phase noise shaping in low-cost 0.4 mu m CMOS achieving 700 fs rms phase jitter“, 2015 Nordic Circuits and Systems Conference (Norcas) - Norchip & International Symposium on System-on-Chip (Soc), 2015, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000380441400004
    10. H. Li, R. Banucu, A. Buchau, N. Klaas, und W. M. Rucker, „Optimisation of a concentration measurement sensor for nano sized zero valent iron using numerical simulation“, IET Science, Measurement and Technology, 2015.
    11. T. Liu, J. Anders, und M. Ortmanns, „Bidirectional optical transcutaneous telemetric link for brain machine interface“, Electronics Letters, Bd. 51, Nr. 24, Art. Nr. 24, 2015, doi: 10.1049/el.2015.1404.
    12. M. Lorenz, R. Ritter, J. Anders, und M. Ortmanns, „Estimation of Non-Idealities in Sigma-Delta Modulators for Test and Correction Using Unscented Kalman Filters“, Ieee Transactions on Circuits and Systems I-Regular Papers, Bd. 62, Nr. 5, Art. Nr. 5, 2015, doi: 10.1109/Tcsi.2015.2395611.
  11. 2014

    1. A. AlMarashli, J. Anders, und M. Ortmanns, „Employing Incremental Sigma Delta DACs for High Resolution SAR ADC“, 2014 21st Ieee International Conference on Electronics, Circuits and Systems (Icecs), S. 132–135, 2014, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000380548000034
    2. U. Bihr u. a., „A Neural Recorder IC with HV Input Multiplexer for Voltage and Current Stimulation with 18V Compliance“, Proceedings of the 40th European Solid-State Circuit Conference (Esscirc 2014), S. 103-+, 2014, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000349461900020
    3. U. Bihr, H. Xu, C. Bulach, M. Lorenz, J. Anders, und M. Ortmanns, „Real-time data compression of neural spikes“, in 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS), in 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS). Juni 2014, S. 436–439. doi: 10.1109/NEWCAS.2014.6934076.
    4. T. Bruckner, C. Zorn, J. Anders, J. Becker, W. Mathis, und M. Ortmanns, „A GPU-Accelerated Web-Based Synthesis Tool for CT Sigma-Delta Modulators“, Ieee Transactions on Circuits and Systems I-Regular Papers, Bd. 61, Nr. 5, Art. Nr. 5, 2014, doi: 10.1109/Tcsi.2013.2289408.
    5. T. Brückner, C. Zorn, J. Anders, J. Becker, W. Mathis, und M. Ortmanns, „A GPU-Accelerated Web-Based Synthesis Tool for CT Sigma-Delta Modulators“, IEEE Transactions on Circuits and Systems I: Regular Papers, Bd. 61, Nr. 5, Art. Nr. 5, Mai 2014, doi: 10.1109/TCSI.2013.2289408.
    6. A. Buchau und W. M. Rucker, „The meshfree computation of stationary electric current densities in complex shaped conductors using 3D boundary element methods“, in Boundary Elements and Other Mesh Reduction Methods XXXVII, C. Brebbia und A. Cheng, Hrsg., in Boundary Elements and Other Mesh Reduction Methods XXXVII. , WIT Press, 2014, S. 121–133.
    7. C. Chu u. a., „A 1.92-GS/s CT Delta Sigma Modulator with 70-dB DR and 78-dB SFDR in 15-MHz Bandwidth“, 2014 Ieee 12th International New Circuits and Systems Conference (Newcas), S. 480–483, 2014, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000363906700118
    8. C. Chu u. a., „A 1.92-GS/s CT ΔΣ modulator with 70-db DR and 78-db SFDR in 15-MHz bandwidth“, in 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS), in 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS). Juni 2014, S. 480–483. doi: 10.1109/NEWCAS.2014.6934087.
    9. A. Elkafrawy, A. AlMarashli, R. Ritter, J. Anders, und M. Ortmanns, „Design of a High Linearity Gm Stage for a High Speed Current Mode SAR ADC“, 2014 21st Ieee International Conference on Electronics, Circuits and Systems (Icecs), S. 136–139, 2014, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000380548000035
    10. A. Elkafrawy, J. Anders, und M. Ortmanns, „A high resolution transimpedance amplifier for use in a 10-bit 200 MS/s current mode SAR ADC“, in 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS), in 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS). Aug. 2014, S. 1057–1060. doi: 10.1109/MWSCAS.2014.6908600.
    11. G. Gualco, J. Anders, A. Sienkiewicz, S. Alberti, L. Forro, und G. Boero, „Cryogenic single-chip electron spin resonance detector“, Journal of Magnetic Resonance, Bd. 247, S. 96–103, 2014, doi: 10.1016/j.jmr.2014.08.013.
    12. M. Jüttner, A. Buchau, und W. M. Rucker, „Software Agent Based Solution of Segregated Multiphysics Problems with Varying Study Types“, in The 12th International Workshop on Finite Elements for Microwave Engineering - FEM2014, in The 12th International Workshop on Finite Elements for Microwave Engineering - FEM2014. Chengdu, China, 2014, S. 65.
    13. M. Jüttner, A. Buchau, D. Vögeli, W. M. Rucker, und P. Göhner, „Iterative Software Agent Based Solution of Multiphysics Problems“, in Scientific Computing in Electrical Engineering SCEE, in Scientific Computing in Electrical Engineering SCEE. Wuppertal, Germany, 2014, S. 32–33.
    14. T. Liu, U. Bihr, J. Anders, und M. Ortmanns, „Performance evaluation of a low power optical wireless link for biomedical data transfer“, in 2014 IEEE International Symposium on Circuits and Systems (ISCAS), in 2014 IEEE International Symposium on Circuits and Systems (ISCAS). Juni 2014, S. 870–873. doi: 10.1109/ISCAS.2014.6865274.
    15. T. Liu, U. Bihr, J. Becker, J. Anders, und M. Ortmanns, „Live demonstration: In vivo verification of a 100 Mbps transcutaneous optical telemetric link“, in 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, in 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings. Okt. 2014, S. 186–186. doi: 10.1109/BioCAS.2014.6981689.
    16. T. Liu, U. Bihr, J. Becker, J. Anders, und M. Ortmanns, „In vivo verification of a 100 Mbps transcutaneous optical telemetric link“, in 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, in 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings. Okt. 2014, S. 580–583. doi: 10.1109/BioCAS.2014.6981792.
    17. T. Liu, Z. Cai, J. Anders, und M. Ortmanns, „A bootstrap transimpedance amplifier for high speed optical transcutaneous wireless links“, in 2014 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), in 2014 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME). Juni 2014, S. 1–4. doi: 10.1109/PRIME.2014.6872669.
    18. M. Lorenz, T. Brückner, R. Ritter, J. Anders, und M. Ortmanns, „A square root unscented Kalman filter for estimating DAC and loopfilter nonidealities in continuous-time sigma-delta modulators“, in 2014 IEEE International Symposium on Circuits and Systems (ISCAS), in 2014 IEEE International Symposium on Circuits and Systems (ISCAS). Juni 2014, S. 1159–1162. doi: 10.1109/ISCAS.2014.6865346.
    19. M. Lorenz, T. Bruckner, R. Ritter, J. Anders, und M. Ortmanns, „A Square Root Unscented Kalman Filter for Estimating DAC and Loopfilter Nonidealities in Continuous-Time Sigma-Delta Modulators“, 2014 Ieee International Symposium on Circuits and Systems (Iscas), S. 1159–1162, 2014, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000346488600294
    20. B. Schlecker, M. Dukic, B. Erickson, M. Ortmanns, G. Fantner, und J. Anders, „Single-Cycle-PLL Detection for Real-Time FM-AFM Applications“, IEEE Transactions on Biomedical Circuits and Systems, Bd. 8, Nr. 2, Art. Nr. 2, Apr. 2014, doi: 10.1109/TBCAS.2014.2307696.
    21. H. Xu, M. Lorenz, U. Bihr, J. Anders, und M. Ortmanns, „Wide-band efficiency-enhanced CMOS rectifier“, in 2014 IEEE International Symposium on Circuits and Systems (ISCAS), in 2014 IEEE International Symposium on Circuits and Systems (ISCAS). Juni 2014, S. 614–617. doi: 10.1109/ISCAS.2014.6865210.
  12. 2013

    1. J. Anders, J. Handwerker, M. Ortmanns, und G. Boero, „A fully-integrated detector for NMR microscopy in 0.13 mu m CMOS“, Proceedings of the 2013 Ieee Asian Solid-State Circuits Conference (a-Sscc), S. 437–440, 2013, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000330857500109
    2. J. Anders, J. Handwerker, M. Ortmanns, und G. Boero, „A fully-integrated detector for NMR microscopy in 0.13μm CMOS“, in 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC), in 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC). Nov. 2013, S. 437–440. doi: 10.1109/ASSCC.2013.6691076.
    3. J. Anders und M. Ortmanns, „Frequency noise of CMOS LC tank oscillators operating in weak inversion“, in 2013 European Conference on Circuit Theory and Design (ECCTD), in 2013 European Conference on Circuit Theory and Design (ECCTD). Sep. 2013, S. 1–4. doi: 10.1109/ECCTD.2013.6662207.
    4. R. Banucu, C. Scheiblich, J. Albert, V. Reinauer, und W. M. Rucker, „Efficient Compression of 3-D Eddy Current Problems With Integral Formulations“, IEEE Transactions on Magnetics, Bd. 49, Nr. 5, Art. Nr. 5, Mai 2013, doi: 10.1109/TMAG.2013.2242258.
    5. U. Bihr, T. Ungru, H. Xu, J. Anders, J. Becker, und M. Ortmanns, „A bidirectional neural interface with a HV stimulator and a LV neural amplifier“, in 2013 IEEE International Symposium on Circuits and Systems (ISCAS), in 2013 IEEE International Symposium on Circuits and Systems (ISCAS). Mai 2013, S. 401–404. doi: 10.1109/ISCAS.2013.6571865.
    6. G. Boero, G. Gualco, R. Lisowski, J. Anders, D. Suter, und J. Brugger, „Room temperature strong coupling between a microwave oscillator and an ensemble of electron spins“, Journal of Magnetic Resonance, Bd. 231, S. 133–140, 2013, doi: 10.1016/j.jmr.2013.04.004.
    7. T. Bruckner u. a., „Discrete-Time Simulation of Continuous-Time Sigma Delta Modulators With Arbitrary Input Signals“, 2013 Ieee 20th International Conference on Electronics, Circuits, and Systems (Icecs), S. 549–552, 2013, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000339725900143
    8. T. Bru¨ckner u. a., „Discrete-time simulation of continuous-time ΣΔ modulators with arbitrary input signals“, in 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), in 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS). Dez. 2013, S. 549–552. doi: 10.1109/ICECS.2013.6815473.
    9. C. Chu, T. Brückner, J. G. Kauffman, J. Anders, J. Becker, und M. Ortmanns, „Analysis and design of high speed/high linearity continuous time delta-sigma modulator“, in 2013 IEEE International Symposium on Circuits and Systems (ISCAS), in 2013 IEEE International Symposium on Circuits and Systems (ISCAS). Mai 2013, S. 1268–1271. doi: 10.1109/ISCAS.2013.6572084.
    10. C. Chu, T. Bruckner, J. G. Kauffman, J. Anders, J. Becker, und M. Ortmanns, „Analysis and Design of High Speed/High Linearity Continuous Time Delta-Sigma Modulator“, 2013 Ieee International Symposium on Circuits and Systems (Iscas), S. 1268–1271, 2013, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000332006801126
    11. A. Elkafrawy, J. Anders, T. Bruckner, und M. Ortmanns, „Design of a Current Steering DAC for a High Speed Current Mode SAR ADC“, 2013 Ieee 20th International Conference on Electronics, Circuits, and Systems (Icecs), S. 441–444, 2013, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000339725900119
    12. A. Elkafrawy, J. Anders, T. Brückner, und M. Ortmanns, „Design of a current steering DAC for a high speed current mode SAR ADC“, in 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), in 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS). Dez. 2013, S. 441–444. doi: 10.1109/ICECS.2013.6815449.
    13. J. Handwerker u. a., „An active TX/RX NMR probe for real-time monitoring of MRI field imperfections“, in 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), in 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS). Okt. 2013, S. 194–197. doi: 10.1109/BioCAS.2013.6679672.
    14. M. Jüttner, A. Buchau, M. Rauscher, W. M. Rucker, und P. Göhner, „Iterative Solution of Multiphysics Problems using Software Agents Designed as Physics Experts“, in International Symposium on Theoretical Electrical Engineering, in International Symposium on Theoretical Electrical Engineering. Pilsen, Czech Republic, 2013, S. 1–7.
    15. T. Liu, J. Anders, und M. Ortmanns, „System level model for transcutaneous optical telemetric link“, in 2013 IEEE International Symposium on Circuits and Systems (ISCAS), in 2013 IEEE International Symposium on Circuits and Systems (ISCAS). Mai 2013, S. 865–868. doi: 10.1109/ISCAS.2013.6571984.
    16. T. Liu, J. Anders, und M. Ortmanns, „Design optimization of the optical receiver in transcutaneous telemetric links“, in 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), in 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS). Okt. 2013, S. 346–349. doi: 10.1109/BioCAS.2013.6679710.
    17. M. Lorenz, T. Bruckner, J. Anders, und M. Ortmanns, „An Advanced Unscented Kalman Filter Algorithm for Parameter Estimation in Continuous-Time Sigma-Delta Modulators“, 2013 Ieee 20th International Conference on Electronics, Circuits, and Systems (Icecs), S. 545–548, 2013, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000339725900142
    18. B. Schlecker, M. Ortmanns, J. Anders, und G. Fantner, „Novel electronics for high-speed FM-AFM in life science applications“, in 2013 European Conference on Circuit Theory and Design (ECCTD), in 2013 European Conference on Circuit Theory and Design (ECCTD). Sep. 2013, S. 1–4. doi: 10.1109/ECCTD.2013.6662241.
    19. B. Schlecker, M. Ortmanns, J. Anders, und G. Fantner, „PLL-based high-speed demodulation of FM signals for real-time AFM applications“, in 2013 IEEE International Symposium on Circuits and Systems (ISCAS), in 2013 IEEE International Symposium on Circuits and Systems (ISCAS). Mai 2013, S. 197–200. doi: 10.1109/ISCAS.2013.6571816.
  13. 2012

    1. J. Albert, R. Banucu, V. Reinauer, C. Scheiblich, und W. M. Rucker, „Comparison of a Direct and a Vector Potential Integral Equation Method for the Computation of Eddy Currents“, IEEE Transactions on Magnetics, Bd. 48, Nr. 2, Art. Nr. 2, Feb. 2012.
    2. J. Anders, M. Ortmanns, und G. Boero, „Frequency noise in current-starved CMOS LC tank oscillators“, in NDES 2012; Nonlinear Dynamics of Electronic Systems, in NDES 2012; Nonlinear Dynamics of Electronic Systems. Juli 2012, S. 1–4. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/6293767
    3. J. Anders, P. SanGiorgio, X. Deligianni, F. Santini, K. Scheffler, und G. Boero, „Integrated active tracking detector for MRI-guided interventions“, Magnetic Resonance in Medicine, Bd. 67, Nr. 1, Art. Nr. 1, 2012, doi: 10.1002/mrm.23112.
    4. A. Buchau, M. Jüttner, und W. M. Rucker, „Automatic domain detection for a meshfree post-processing in boundary element methods“, in 15th International IGTE Symposium, in 15th International IGTE Symposium. Graz, 2012, S. 386–391.
    5. M. Jüttner, A. Buchau, M. Rauscher, und P. Göhner, „Software Agent Based Domain Decomposition Method“, in 15th International IGTE Symposium, in 15th International IGTE Symposium. Graz, Austria, 2012, S. 89–94.
    6. J. G. Kauffman, V. Rieger, R. Ritter, J. Anders, und M. Ortmanns, „Design of a 5bit 1GSps VCO Quantizer for a CT Delta Sigma Modulator“, in PRIME 2012; 8th Conference on Ph.D. Research in Microelectronics  Electronics, in PRIME 2012; 8th Conference on Ph.D. Research in Microelectronics  Electronics. Juni 2012, S. 1–4. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/6226117
    7. H. Li, C. de Boer, H. Hermes, A. Buchau, N. Klaas, und W. M. Rucker, „Development of an inductive concentration measurement sensor of nano sized zero valent iron“, in Systems, Signals and Devices (SSD), 2012 - 9th International Multi-Conference on Systems, Signals and Devices, in Systems, Signals and Devices (SSD), 2012 - 9th International Multi-Conference on Systems, Signals and Devices. Chemnitz, Germany, März 2012, S. 1–7. doi: 10.1109/SSD.2012.6198042.
    8. V. Reinauer u. a., „Object-Oriented Development of an Optimization Software in Java using Evolution Strategies“, IEEE Transactions on Magnetics, Bd. 48, Nr. 2, Art. Nr. 2, Feb. 2012.
  14. 2011

    1. V. Badilita u. a., „3d Solenoidal Microcoil Arrays with Cmos Integrated Amplifiers for Parallel Mr Imaging and Spectroscopy“, 2011 Ieee 24th International Conference on Micro Electro Mechanical Systems (Mems), S. 809–812, 2011, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000295841200201
    2. R. Banucu u. a., „Design and Optimization of a Contactless Magnetically Levitated Actuator for 4-Axis-Machining“, IEEE Transactions on Magnetics, Bd. 47, Nr. 5, Art. Nr. 5, Mai 2011.
    3. C. Scheiblich, R. Banucu, V. Reinauer, J. Albert, und W. M. Rucker, „Parallel Hierarchical Block Wavelet Compression for an Optimal Compression of 3-D BEM Problems“, IEEE Transactions on Magnetics, Bd. 47, Nr. 5, Art. Nr. 5, Mai 2011.
  15. 2010

    1. J. Albert, R. Banucu, V. Reinauer, C. Scheiblich, und W. M. Rucker, „Reduction of Degrees of Freedom for the Computation of Eddy Current Problems“, in 14th International IGTE Symposium 2010, in 14th International IGTE Symposium 2010. Graz, Austria, 2010.
    2. J. Anders, P. SanGiorgio, und G. Boero, „A quadrature receiver for μNMR applications in 0.13μm CMOS“, in 2010 Proceedings of ESSCIRC, in 2010 Proceedings of ESSCIRC. Sep. 2010, S. 394–397. doi: 10.1109/ESSCIRC.2010.5619726.
    3. R. Banucu u. a., „Automated Optimization in the Design Process of a Magnetically Levitated Table for Machine Tool Applications“, IEEE Transactions on Magnetics, Bd. 46, Nr. 8, Art. Nr. 8, Aug. 2010.
    4. R. Banucu, C. Scheiblich, J. Albert, V. Reinauer, und W. M. Rucker, „Acceleration of the BWC for a 3-D BEM Problem using Wavelet Approximation Patterns“, in 14th International IGTE Symposium 2010, in 14th International IGTE Symposium 2010. Graz, Austria, 2010.
    5. A. Buchau und W. M. Rucker, „Meshfree Visualization of Field Lines in 3D“, in 14th International IGTE Symposium, in 14th International IGTE Symposium. Graz, 2010, S. 172–177.
    6. A. Buchau, W. M. Rucker, C. de Boer, und N. Klaas, „Inductive detection and concentration measurement of nano sized zero valent iron in the subsurface“, IET Science, Measurement and Technology, Bd. 4, Nr. 6, Art. Nr. 6, Nov. 2010, doi: 10.1049/iet-smt.2009.0116.
    7. V. Reinauer, C. Scheiblich, R. Banucu, J. Albert, und W. M. Rucker, „Object-Oriented Design of the Zienkiewicz-Zhu Method“, in 14th International IGTE Symposium 2010, in 14th International IGTE Symposium 2010. Graz, Austria, 2010.
    8. C. Scheiblich, R. Banucu, V. Reinauer, J. Albert, und W. M. Rucker, „Parallel HWC of the Radiative Heat Transfer Matrix for a FEM-BEM Coupled Electric Heating System“, in 14th International IGTE Symposium 2010, in 14th International IGTE Symposium 2010. Graz, Austria, 2010.
    9. C. Scheiblich, R. Banucu, V. Reinauer, J. Albert, und W. M. Rucker, „Parallel Hierarchical Block Wavelet Compression for an Optimal Compression Rate of 3-D BEM Problems“, in 14th Biennial IEEE Conference on Electromagnetic Field Computation, in 14th Biennial IEEE Conference on Electromagnetic Field Computation. Chicago, USA, 2010.
  16. 2009

    1. J. Albert, R. Banucu, W. Hafla, und W. M. Rucker, „Simulation Based Development of a Valve Actuator for Alternative Drives using BEM-FEM Code“, IEEE Transactions on Magnetics, Bd. 45, Nr. 3, Art. Nr. 3, März 2009.
    2. J. Anders, J. Bremer, und W. Mathis, „Mixed-logic dynamical system modeling of ΣΔ-modulators and its application to stability analysis“, in 2009 IEEE International Symposium on Circuits and Systems, in 2009 IEEE International Symposium on Circuits and Systems. Mai 2009, S. 3122–3125. doi: 10.1109/ISCAS.2009.5118464.
    3. J. Anders, G. Chiaramonte, P. SanGiorgio, und G. Boero, „A single-chip array of NMR receivers“, Journal of Magnetic Resonance, Bd. 201, Nr. 2, Art. Nr. 2, 2009, doi: 10.1016/j.jmr.2009.09.019.
    4. J. Anders, S. Reymond, G. Boero, und K. Scheffler, „A Low-Noise CMOS Receiver Frontend for NMR-based Surgical Guidance“, 13th International Conference on Biomedical Engineering, Vols 1-3, Bd. 23, Nr. 1–3, Art. Nr. 1–3, 2009, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000268245600022
    5. J. Anders, P. SanGiorgio, und G. Boero, „An integrated CMOS receiver chip for NMR-applications“, in 2009 IEEE Custom Integrated Circuits Conference, in 2009 IEEE Custom Integrated Circuits Conference. Sep. 2009, S. 471–474. doi: 10.1109/CICC.2009.5280786.
    6. A. Buchau, W. M. Rucker, U. Wössner, und M. Becker, „Augmented reality in teaching of electrodynamics“, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Bd. 28, Nr. 4, Art. Nr. 4, Juli 2009, doi: 10.1108/03321640910959026.
    7. J. Lee u. a., „A 2.5 mW 80 dB DR 36 dB SNDR 22 MS/s Logarithmic Pipeline ADC“, IEEE Journal of Solid-State Circuits, Bd. 44, Nr. 10, Art. Nr. 10, Okt. 2009, doi: 10.1109/JSSC.2009.2028052.
    8. C. Scheiblich, R. Banucu, J. Albert, V. Reinauer, und W. M. Rucker, „Hierarchical Block Wavelet Compression for BEM Problems of Arbitrary Dimension“, in 17th Conference on the Computation of Electromagnetic Fields, in 17th Conference on the Computation of Electromagnetic Fields. Florianopolis, Brazil, 2009, S. 57–58.
    9. C. Scheiblich, V. Kolitsas, und W. M. Rucker, „Compression of the Radiative Heat Transfer BEM Matrix of an Inductive Heating System using a Block-Oriented Wavelet Transform“, IEEE Transactions on Magnetics, Bd. 45, Nr. 3, Art. Nr. 3, März 2009.
  17. 2008

    1. J. Anders und G. Boero, „A low-noise CMOS receiver frontend for MRI“, in 2008 IEEE Biomedical Circuits and Systems Conference, in 2008 IEEE Biomedical Circuits and Systems Conference. Nov. 2008, S. 165–168. doi: 10.1109/BIOCAS.2008.4696900.
    2. J. Anders, W. Mathis, und M. Ortmanns, „A new optimization approach for the automatic design of Sigma Delta-modulators“, Proceedings of 2008 Ieee International Symposium on Circuits and Systems, Vols 1-10, S. 1432-+, 2008, doi: Doi 10.1109/Iscas.2008.4541697.
    3. J. Anders, W. Mathis, und M. Ortmanns, „A new optimization approach for the automatic design of ΣΔ-modulators“, in 2008 IEEE International Symposium on Circuits and Systems, in 2008 IEEE International Symposium on Circuits and Systems. Mai 2008, S. 1432–1435. doi: 10.1109/ISCAS.2008.4541697.
    4. A. Buchau, S. M. Tsafak, W. Hafla, und W. M. Rucker, „Parallelization of a Fast Multipole Boundary Element Method with Cluster OpenMP“, IEEE Transactions on Magnetics, Bd. 44, Nr. 6, Art. Nr. 6, Juni 2008, doi: 10.1109/TMAG.2007.916262.
    5. W. Hafla, A. Buchau, und W. M. Rucker, „Consideration of Scalar Magnetic Hysteresis with the Integral Equation Method“, IEEE Transactions on Magnetics, Bd. 44, Nr. 6, Art. Nr. 6, Juni 2008, doi: 10.1109/TMAG.2007.916170.
    6. W. Hafla, A. Buchau, und W. M. Rucker, „Field Computation with the Integral Equation Method and Non-linear Orthotropic Materials“, in XX Symposium on Electromagnetic Phenomena in Nonlinear Circuits (EPNC 2008), in XX Symposium on Electromagnetic Phenomena in Nonlinear Circuits (EPNC 2008). Lille, 2008.
    7. C. Scheiblich, V. Kolitsas, und W. M. Rucker, „Compression of the Radiative Heat Transfer BEM Matrix of an Inductive Heating System using a Block-Oriented Wavelet Transform“, in Proceedings of 13th Biennial IEEE Conference on Electromagnetic Field Computation, in Proceedings of 13th Biennial IEEE Conference on Electromagnetic Field Computation. Greece, Athens, 2008, S. 186.
  18. 2007

    1. J. Albert, W. Hafla, A. Buchau, und W. M. Rucker, „Eddy Currents and Lorentz Forces in Pulsed Magnetic Forming“, Advanced Computer Techniques in Applied Electromagnetics, Bd. 30, S. 16–20, 2007, doi: 10.3233/978-1-58603-895-3-16.
    2. J. Anders, S. Krishnan, und G. Gronthoud, „Re-Configuration of Sub-blocks for Effective Application of Time Domain Tests“, in 2007 Design, Automation  Test in Europe Conference  Exhibition, in 2007 Design, Automation  Test in Europe Conference  Exhibition. Apr. 2007, S. 1–6. doi: 10.1109/DATE.2007.364678.
    3. J. Anders und W. Mathis, „On the modeling and the stability of continuous-time ΣΔ-Modulators“, in 2007 IEEE International Symposium on Circuits and Systems, in 2007 IEEE International Symposium on Circuits and Systems. Mai 2007, S. 9–12. doi: 10.1109/ISCAS.2007.378130.
    4. A. Buchau, W. Hafla, und W. M. Rucker, „Accuracy Investigations of Boundary Element Methods for the Solution of Laplace Equations“, IEEE Transactions on Magnetics, Bd. 43, Nr. 4, Art. Nr. 4, Apr. 2007, doi: 10.1109/TMAG.2007.892304.
    5. A. Buchau, S. M. Tsafak, W. Hafla, und W. M. Rucker, „Parallelization of a Fast Multipole Boundary Element Method with Cluster OpenMP“, in 16th Conference on the Computation of Electromagnetic Fields Compumag 2007, in 16th Conference on the Computation of Electromagnetic Fields Compumag 2007. Aachen, 2007, S. 791–792.
    6. W. Hafla, A. Buchau, und W. M. Rucker, „Force Computation with the Integral Equation Method“, Advanced Computer Techniques in Applied Electromagnetics, Bd. 30, S. 93–97, 2007, doi: 10.3233/978-1-58603-895-3-93.
    7. W. Hafla, A. Buchau, W. M. Rucker, A. Weinläder, und A. Bardakcioglu, „Efficient post‐processing with the integral equation method“, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Bd. 26, Nr. 3, Art. Nr. 3, Jan. 2007, doi: 10.1108/03321640710751280.
    8. W. Hafla, A. Buchau, W. M. Rucker, A. Weinläder, und B. Klotz, „Efficient design analysis of a novel magnetic gear on a high performance computer“, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Bd. 26, Nr. 3, Art. Nr. 3, Jan. 2007, doi: 10.1108/03321640710751172.
    9. J. Lee, S. Park, J. Kang, J. Seo, J. Anders, und M. Flynn, „A 2.5mW 80dB DR 36dB SNDR 22MS/s Logarithmic Pipeline ADC“, in 2007 IEEE Symposium on VLSI Circuits, in 2007 IEEE Symposium on VLSI Circuits. Juni 2007, S. 194–195. doi: 10.1109/VLSIC.2007.4342711.
    10. W. M. Rucker, A. Buchau, und W. Hafla, „Verschleißfreie magnetische Getriebe - Übertragung von Kräften über magnetische Felder“, Wechselwirkungen - Jahrbuch aus Lehre und Forschung der Universität Stuttgart, S. 64–71, 2007.
    11. C. Scheiblich, K. Frenner, und W. M. Rucker, „Coupling Thermal Radiation to an Inductive Heating Computation“, in Proceedings of International Symposium on Electromagnetic Fields in Electrical Engineering - ISEF 2007, in Proceedings of International Symposium on Electromagnetic Fields in Electrical Engineering - ISEF 2007. Prag, 2007, S. 449–450.
    12. H. Wolfgang, B. André, R. W. M., W. Andreas, und B. Antoni, „Efficient post‐processing with the integral equation method“, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Bd. 26, Nr. 3, Art. Nr. 3, Jan. 2007, doi: 10.1108/03321640710751280.
    13. H. Wolfgang, B. André, R. W. M., W. Andreas, und K. Benjamin, „Efficient design analysis of a novel magnetic gear on a high performance computer“, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Bd. 26, Nr. 3, Art. Nr. 3, Jan. 2007, doi: 10.1108/03321640710751172.
  19. 2006

    1. A. Buchau, W. Hafla, und W. M. Rucker, „Analysis of electric fields and currents in printed circuit boards with boundary element methods“, in Book of Abstracts, IABEM 2006 Conference, in Book of Abstracts, IABEM 2006 Conference. Graz, 2006, S. 317–320.
    2. A. Buchau, W. Hafla, und W. M. Rucker, „Accuracy investigations of boundary element methods for the solution of Laplace equations“, in Digest Book of CEFC 2006, in Digest Book of CEFC 2006. Miami, 2006, S. 18.
    3. K. Frenner, C. Scheiblich, und W. M. Rucker, „Construction and Classification of Form Functions for the Galerkin-Hodge Discretization using Group Theory“, in Proceedings of 12th International IGTE Symposium, in Proceedings of 12th International IGTE Symposium. Graz, 2006, S. 390–393.
    4. W. Hafla, A. Buchau, W. Rucker, A. Weinläder, und A. Bardakcioglu, „Efficient Post-Processing with the Integral Equation Method“, in Proceedings of 12th International IGTE Symposium, in Proceedings of 12th International IGTE Symposium. 2006, S. 428–433.
    5. W. Hafla, F. Groh, A. Buchau, und W. M. Rucker, „Magnetic field computation with integral equation method and energy-controlled relaxation“, IEEE Transactions on Magnetics, Bd. 42, Nr. 4, Art. Nr. 4, Apr. 2006, doi: 10.1109/TMAG.2006.871598.
    6. W. Hafla, A. Buchau, A. Bardakcioglu, C. Scheiblich, und W. M. Rucker, „Fuzzy Logic Adaptive Mesh Refinement for 3D Nonlinear Magnetostatic Problems Using Integral Equation Method“, in Digest Book of CEFC 2006, in Digest Book of CEFC 2006. Miami, Apr. 2006, S. 118. doi: 10.1109/CEFC-06.2006.1632911.
    7. W. Hafla, A. Buchau, und W. M. Rucker, „Application of Fast Multipole Method to Biot-Savart Law Computations“, in Proceedings of the Sixth International Conference on Computational Electromagnetics, in Proceedings of the Sixth International Conference on Computational Electromagnetics. 2006, S. 1–2.
    8. C. Scheiblich, K. Frenner, und W. M. Rucker, „Computation of Radiative Heat Transfer with the Boundary Element Method Applied to Inductive Heating“, in Proceedings of 12th International IGTE Symposium, in Proceedings of 12th International IGTE Symposium. Graz, 2006, S. 462–466.
  20. 2005

    1. B. André, H. Wolfgang, G. Friedemann, und R. W. M., „Parallelized computation of compressed BEM matrices on multiprocessor computer clusters“, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Bd. 24, Nr. 2, Art. Nr. 2, Jan. 2005, doi: 10.1108/03321640510586105.
    2. A. Buchau, W. Hafla, F. Groh, und W. M. Rucker, „Fast multipole method based solution of electrostatic and magnetostatic field problems“, Computing and Visualisation in Science, Bd. 8, Nr. 3–4, Art. Nr. 3–4, Dez. 2005, doi: 10.1007/s00791-005-0003-8.
    3. A. Buchau, W. Hafla, F. Groh, und W. M. Rucker, „Parallelized computation of compressed BEM matrices on multiprocessor computer clusters“, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Bd. 24, Nr. 2, Art. Nr. 2, Jan. 2005, doi: 10.1108/03321640510586105.
    4. A. Buchau, W. Hafla, und W. M. Rucker, „Dual Reciprocity Method for the Solution of Electrostatic Field Problems with Inhomogeneous Dielectrics“, in COMPUMAG 2005 Proceedings, in COMPUMAG 2005 Proceedings. 2005.
    5. F. Groh, D. Beck, W. Hafla, A. Buchau, und W. M. Rucker, „Calculating Exciting Fields using the Fast Multipole Method and an Integral Transformation to the Coil Surface“, IEEE Transactions on Magnetics, Bd. 41, Nr. 5, Art. Nr. 5, Mai 2005, doi: 10.1109/TMAG.2005.844355.
    6. F. Groh, W. Hafla, und W. M. Rucker, „Non-linear Magnetostatic Integral Equations Iteratively Solved by Minimizing an Energy-Function“, in COMPUMAG 2005 Proceedings, in COMPUMAG 2005 Proceedings. 2005.
    7. W. Hafla, A. Buchau, F. Groh, und W. M. Rucker, „Efficient Integral Equation Method for the Solution of 3D Magnetostatic Problems“, IEEE Transactions on Magnetics, Bd. 41, Nr. 5, Art. Nr. 5, Mai 2005, doi: 10.1109/TMAG.2005.844342.
  21. 2004

    1. B. André, H. Wolfgang, und R. W. M., „Fast and efficient 3D boundary element method for closed domains“, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Bd. 23, Nr. 4, Art. Nr. 4, Jan. 2004, doi: 10.1108/03321640410553283.
    2. A. Buchau, W. Hafla, F. Groh, und W. M. Rucker, „Fast Multipole Boundary Element Method For The Solution Of 3D Electrostatic Field Problems“, WIT Transactions on Modelling and Simulation, Bd. 37, S. 369–379, 2004, doi: 10.2495/BE040361.
    3. A. Buchau, W. Hafla, F. Groh, und W. M. Rucker, „Parallelized Computation of Compressed BEM Matrices on Multiprocessor Computer Clusters“, in Proceedings of the 11th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering, in Proceedings of the 11th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering. Graz, 2004.
    4. A. Buchau, W. Hafla, und W. M. Rucker, „Fast and efficient 3D boundary element method for closed domains“, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Bd. 23, Nr. 4, Art. Nr. 4, Jan. 2004, doi: 10.1108/03321640410553283.
    5. G. Friedemann, H. Wolfgang, B. André, und R. W. M., „Field strength computation at edges in nonlinear magnetostatics“, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Bd. 23, Nr. 3, Art. Nr. 3, Jan. 2004, doi: 10.1108/03321640410540575.
    6. F. Groh, W. Hafla, A. Buchau, und W. Rucker, „Field strength computation at edges in nonlinear magnetostatics“, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Bd. 23, Nr. 3, Art. Nr. 3, Jan. 2004, doi: 10.1108/03321640410540575.
    7. W. Hafla, F. Groh, A. Buchau, und W. M. Rucker, „Efficient IEM Computations of Static Nonlinear Magnetic Field Problems with Higher Order Elements“, in Proceedings of the 11th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering, in Proceedings of the 11th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering. Graz, 2004.
  22. 2003

    1. B. André, H. Wolfgang, G. Friedemann, und R. W. M., „Improved grouping scheme and meshing strategies for the fast multipole method“, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Bd. 22, Nr. 3, Art. Nr. 3, Jan. 2003, doi: 10.1108/03321640310474895.
    2. A. Buchau, W. M. Rucker, O. Rain, V. Rischmuller, S. Kurz, und S. Rjasanow, „Comparison between different approaches for fast and efficient 3-D BEM computations“, IEEE Transactions on Magnetics, Bd. 39, Nr. 3, Art. Nr. 3, Mai 2003, doi: 10.1109/TMAG.2003.810167.
    3. A. Buchau, W. Hafla, F. Groh, und W. M. Rucker, „Compression Techniques for Integral Equation Methods“, in Tagungsband des 48. Internationalen Wissenschaftlichen Kolloquiums, in Tagungsband des 48. Internationalen Wissenschaftlichen Kolloquiums. Ilmenau, 2003, S. 337–338.
    4. A. Buchau, W. Hafla, F. Groh, und W. M. Rucker, „Improved grouping scheme and meshing strategies for the fast multipole method“, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Bd. 22, Nr. 3, Art. Nr. 3, Jan. 2003, doi: 10.1108/03321640310474895.
    5. A. Buchau und W. M. Rucker, „Capacitance Computation of Thin Conductors with the Fast Multipole Method“, International Journal of Applied Electromagnetics and Mechanics, Bd. 17, Nr. 1–3, Art. Nr. 1–3, Juni 2003, doi: 10.3233/JAE-2003-244.
  23. 2002

    1. A. Buchau und W. M. Rucker, „Efficient Computation of Double-Layer Potentials Using the Fast Multipole Method“, in Conference Digest of IEEE CEFC, in Conference Digest of IEEE CEFC. Perugia, 2002, S. 316.
    2. A. Buchau und W. M. Rucker, „Efficient Boundary Element Solutions of Electrostatic Fields Using the Fast Multipole Method“, Technical article in International Compumag Society Newsletter, Bd. 9, Nr. 1, Art. Nr. 1, 2002.
    3. A. Buchau und W. M. Rucker, „Preconditioned Fast Adaptive Multipole Boundary Element Method“, IEEE Transactions on Magnetics, Bd. 38, Nr. 2, Art. Nr. 2, März 2002, doi: 10.1109/20.996122.
    4. O. Henze und W. M. Rucker, „A new Vector Hysteresis Model“, in Proceedings of the 10th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering, in Proceedings of the 10th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering. Graz, 2002, S. 500–504.
  24. 2001

    1. A. Buchau, W. Rieger, und W. M. Rucker, „BEM Computations Using the Fast Multipole Method in Combination with Higher Order Elements and the Galerkin Method“, IEEE Transactions on Magnetics, Bd. 37, Nr. 5, Art. Nr. 5, Sep. 2001, doi: 10.1109/20.952572.
    2. A. Buchau, W. Rieger, und W. M. Rucker, „Fast field computations with the fast multipole method“, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Bd. 20, Nr. 2, Art. Nr. 2, Jan. 2001, doi: 10.1108/03321640110383861.
    3. W. Rieger, A. Buchau, G. Lehner, und W. M. Rucker, „Three-Dimensional Direct and Inverse Electromagnetic Scattering“, High Performance Computing in Science and Engineering, 2001.
    4. V. Rischmüller, S. Kurz, und W. M. Rucker, „Parallel Field Computation Based on Coupling of Differential and Integral Methods“, COMPEL, Bd. 20, Nr. 2, Art. Nr. 2, 2001.
  25. 2000

    1. A. Buchau, C. J. Huber, W. Rieger, und W. M. Rucker, „Fast BEM Computations with the Adaptive Multilevel Fast Multipole Method“, IEEE Transactions on Magnetics, Bd. 36, Nr. 4, Art. Nr. 4, Juli 2000, doi: 10.1109/20.877540.
    2. C. J. Huber, A. Buchau, W. Rieger, und W. M. Rucker, „Boundary Element Computation of Partially Coated Bodies Using Higher Order Edge Elements“, IEEE Transactions on Magnetics, Bd. 36, Nr. 4, Art. Nr. 4, Juli 2000, doi: 10.1109/20.877576.
    3. W. Rieger, A. Buchau, C. J. Huber, G. Lehner, und W. M. Rucker, „A New Approach to the 2D Inverse Electromagnetic Medium Scattering Problem: Reconstruction of Anisotropic Objects“, IEEE Transactions on Magnetics, Bd. 36, Nr. 4, Art. Nr. 4, Juli 2000, doi: 10.1109/20.877634.
    4. V. Rischmüller, S. Kurz, und W. M. Rucker, „Parallel Field Computation Based on Coupling of Differential and Integral Methods“, in Proceedings of the 9th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering, in Proceedings of the 9th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering. Graz, 2000.
  26. 1999

    1. M. Haas, W. Rieger, C. J. Huber, G. Lehner, und W. M. Rucker, „Improvement of inverse scattering results by combining TM- and TE-polarized probing waves using an iterative adaption technique“, IEEE Transactions on Magnetics, Bd. 35, Nr. 3, Art. Nr. 3, 1999.
    2. C. J. Huber, W. Rieger, A. Buchau, und W. M. Rucker, „BEM‐computation of antenna near field reactionson conducting materials using curvilinear edge elements“, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Bd. 18, Nr. 3, Art. Nr. 3, Jan. 1999, doi: 10.1108/03321649910274919.
    3. U. Jakobus, A. Buchau, und F. M. Landstorfer, „Extending a MoM/PO/UTD Hybrid Method by an Automatic Selection of the Computational Methods Based on Neural Networks“, Proceedings of the 15th Annual Review of Progress in Applied Computational Electromagnetics, Bd. 1, S. 455–462, 1999.
    4. W. Rieger, A. Buchau, M. Haas, C. Huber, G. Lehner, und W. M. Rucker, „2D-TE inverse medium scattering: an improved variable metric method“, in IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010), in IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010), vol. 3. Juli 1999, S. 2140–2143 Bd.3. doi: 10.1109/APS.1999.788385.
    5. W. Rieger, A. Buchau, M. Hass, C. Huber, G. Lelmer, und W. M. Rucker, „2D-TE inverse medium scattering: an improved variable metric method“, in IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010), in IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010), vol. 3. Juli 1999, S. 2140–2143 Bd.3. doi: 10.1109/APS.1999.788385.
    6. W. Rieger, M. Haas, C. J. Huber, G. Lehner, und W. M. Rucker, „Image Reconstruction from Real Scattering Data Using an Iterative Scheme with Incorporated a priori Information“, IEEE Antennas and Propagation Magazine, Bd. 41, Nr. 2, Art. Nr. 2, Apr. 1999, doi: 10.1109/74.769690.
    7. V. Rischmüller, J. Fetzer, S. Kurz, und W. M. Rucker, „Analysis of TEAM Workshop Problem 13 Using Parallel BEM Coupled to FEM“, in Proceedings of the International TEAM Workshop, in Proceedings of the International TEAM Workshop. Sapporo, 1999.
    8. V. Rischmüller, J. Fetzer, S. Kurz, und W. M. Rucker, „The Solution of TEAM Problem 21 Using Domain Decomposition and Parallelization“, in Proceedings of the International TEAM Workshop, in Proceedings of the International TEAM Workshop. Sapporo, 1999.
  27. 1998

    1. C. J. Huber, W. Rieger, M. Haas, und W. M. Rucker, „A Boundary Element Formulation Using Higher Order Curvilinear Edge Elements“, IEEE Transactions on Magnetics, Bd. 34, S. 2441–2444, 1998.
    2. S. Kurz, J. Fetzer, G. Lehner, und W. M. Rucker, „Calculation of the eddy current distribution in a Fast-Ferrite-Tuner caused by a dynamic tuning field using BEM-FEM coupling“, in Record of the 8th Biennal IEEE Conference on Electromagnetic Field Computation, in Record of the 8th Biennal IEEE Conference on Electromagnetic Field Computation. Tucson, 1998.
    3. S. Kurz, J. Fetzer, G. Lehner, und W. M. Rucker, „A novel formulation for 3D eddy current problems with moving bodies using a Lagrangian description and BEM-FEM coupling“, IEEE Transactions on Magnetics, Bd. 34, S. 3068–3073, 1998.
    4. S. Kurz, J. Fetzer, und W. M. Rucker, „Coupled BEM-FEM methods for 3D field calculations with iron saturation“, in Proc. of the 1st International Roxie Users Meeting and Workshop, in Proc. of the 1st International Roxie Users Meeting and Workshop. Geneva, 1998, S. 47–59.
    5. W. Rieger, A. Buchau, M. Haas, C. J. Huber, G. Lehner, und W. M. Rucker, „Image Reconstruction from Real Scattering Data“, in Proceedings of 8th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering, in Proceedings of 8th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering. Graz, 1998, S. 263–268.
    6. W. Rieger, M. Haas, C. J. Huber, G. Lehner, und W. M. Rucker, „A New Approach to the 2D-TE Inverse Electromagnetic Medium Scattering“, in IEEE AP-S International Symposium Digest, vol. 2, in IEEE AP-S International Symposium Digest, vol. 2. 1998, S. 706–709.
  28. 1997

    1. J. Fetzer, S. Kurz, G. Lehner, und W. M. Rucker, „Some aspects of force computation using BEM-FEM coupling“, ACES Journal, Bd. 12, Nr. 2, Art. Nr. 2, 1997.
    2. J. Fetzer, S. Kurz, G. Lehner, und W. M. Rucker, „The solution of TEAM workshop problem 24 using BEM-FEM coupling“, in Proceedings of the TEAM Workshop in the Sixth Round, in Proceedings of the TEAM Workshop in the Sixth Round. Rio de Janeiro, 1997, S. 33–35.
    3. M. Haas, W. Rieger, W. M. Rucker, und G. Lehner, „Inverse 3D Acoustic and Electromagnetic Obstacle Scattering by Iterative Adaption“, Lecture Notes in Physics, Springer, 1997.
    4. C. J. Huber, W. Rieger, M. Haas, und W. M. Rucker, „The Numerical Treatment of Singular Integrals in Boundary Element Calculations“, ACES Journal, Bd. 12, Nr. 2, Art. Nr. 2, 1997.
    5. C. J. Huber, W. M. Rucker, R. Hoschek, und K. R. Richter, „A New Method for the Numerical Calculation of Cauchy Principal Value Integrals in BEM applied to Electromagnetics“, IEEE Transactions on Magnetics, Bd. 33, S. 119–123, 1997.
    6. H. Karl, J. Fetzer, S. Kurz, G. Lehner, und W. M. Rucker, „Description of TEAM workshop problem 28: An electromagnetic levitation device“, in Proceedings of the TEAM Workshop in the Sixth Round, in Proceedings of the TEAM Workshop in the Sixth Round. Rio de Janeiro, 1997, S. 48–51.
    7. S. Kurz, J. Fetzer, G. Lehner, und W. M. Rucker, „Die Anwendung der BEM - FEM - Kopplungsmethode zur Behandlung dreidimensionaler nichtlinearer Abschirmungsprobleme niederfrequenter Felder am Beispiel des TEAM Problems 21“, Archiv für Elektrotechnik, Bd. 80, Nr. 2, Art. Nr. 2, 1997.
    8. S. Kurz, J. Fetzer, G. Lehner, und W. M. Rucker, „Die BEM - FEM - Kopplungsmethode zur Behandlung dreidimensionaler nichtlinearer Abschirmungsprobleme niederfrequenter Felder am Beispiel des TEAM Problems 21“, Archiv für Elektrotechnik, Bd. 80, Nr. 2, Art. Nr. 2, 1997.
    9. W. Rieger, M. Haas, C. J. Huber, G. Lehner, und W. M. Rucker, „Inverse Electromagnetic Medium Scattering Using a Variable Metric Method“, in IEEE AP-S International Symposium Digest, vol. 4, in IEEE AP-S International Symposium Digest, vol. 4. 1997, S. 2621–2624.
  29. 1996

    1. J. Fetzer, S. Kurz, G. Lehner, und W. M. Rucker, „Some aspects of force computation using BEM-FEM coupling“, in Proceedings of the 7th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering, in Proceedings of the 7th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering. Graz, 1996, S. 336–340.
    2. S. Kurz, J. Fetzer, G. Lehner, und W. M. Rucker, „The solution of TEAM workshop problem 10 using BEM-FEM coupling“, in Proceedings of the TEAM Workshop, in Proceedings of the TEAM Workshop. Graz, 1996, S. 31–33.

Kontakt

 

Institut für Intelligente Sensorik und Theoretische Elektrotechnik

Pfaffenwaldring 47, Stuttgart

Zum Seitenanfang