Dieses Bild zeigt Jens Anders

Jens Anders

Prof. Dr.

Institutsleiter
Institut für Intelligente Sensorik und Theoretische Elektrotechnik
[Foto: Jens Anders]

Kontakt

Pfaffenwaldring 47
70569 Stuttgart
Deutschland
Raum: 3.114

Sprechstunde

Nach Vereinbarung

Bitte vereinbaren Sie einen Termin über Frau Bärbel Groß

Zeitschriften, Konferenzen und Bücher:
  1. 2024

    1. L. Marti u. a., „Towards optical MAS magnetic resonance using optical traps“, Journal of Magnetic Resonance Open, Bd. 18, S. 100145, 2024, doi: https://doi.org/10.1016/j.jmro.2023.100145.
    2. Q. Yang u. a., „A chip-based C-band ODNP platform“, Journal of Magnetic Resonance, Bd. 358, S. 107603, Jan. 2024, doi: 10.1016/j.jmr.2023.107603.
  2. 2023

    1. A. Chu, M. Kern, K. Khan, K. LiPS, und J. Anders, „A 263GHz 32-Channel EPR-on-a-Chip Injection-Locked VCO-Array“, in 2023 IEEE International Solid- State Circuits Conference (ISSCC), in 2023 IEEE International Solid- State Circuits Conference (ISSCC). Feb. 2023, S. 20–22. doi: 10.1109/ISSCC42615.2023.10067623.
    2. F. Dreyer, D. Krüger, S. Baas, A. Velders, und J. Anders, „A 5-780-MHz Transceiver ASIC for Multinuclear NMR Spectroscopy in 0.13-µm BiCMOS“, IEEE Transactions on Circuits and Systems I: Regular Papers, Bd. 70, S. 3484–3496, Sep. 2023, doi: 10.1109/TCSI.2023.3279495.
    3. F. Dreyer, Q. Yang, B. Alnajjar, D. Krüger, B. Blümich, und J. Anders, „A portable chip-based NMR relaxometry system with arbitrary phase control for point-of-care blood analysis“, IEEE Transactions on Biomedical Circuits and Systems (Early Access), S. 1–12, 2023, doi: 10.1109/TBCAS.2023.3287281.
    4. M. Kern, T. Klotz, M. Spiess, P. Mavridis, B. Blümich, und J. Anders, „Dead Time-Free Detection of NMR Signals Using Voltage-Controlled Oscillators“, Applied Magnetic Resonance, Aug. 2023, doi: 10.1007/s00723-023-01599-8.
    5. K. Khan, M. A. Hassan, M. Kern, und J. Anders, „A 12.2 − 14.9 GHz amplitude-sensitive VCO-based EPR-on-a-chip detector achieving a spin sensitivity of 6 × 109 spins/ √ Hz“, in 2023 18th European Microwave Integrated Circuits Conference (EuMIC), in 2023 18th European Microwave Integrated Circuits Conference (EuMIC). IEEE, Sep. 2023. doi: 10.23919/eumic58042.2023.10288693.
    6. H. Lotfi u. a., „A Diamond Quantum Magnetometer Based on a Chip-Integrated 4-way Transmitter in 130-nm SiGe BiCMOS“, in 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), in 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). Juni 2023, S. 253–256. doi: 10.1109/RFIC54547.2023.10186184.
  3. 2022

    1. A. Buchau und J. Anders, „CHARACTERIZATION OF VECTOR FIELDS BASED ON AN ANALYSIS OF THEIR LOCAL EXPANSIONS“, in WIT Transactions on Engineering Sciences, A. Cheng, Hrsg., in WIT Transactions on Engineering Sciences, vol. 134. WIT Press, Aug. 2022, S. 17–29. doi: 10.2495/be450021.
    2. F. Dreyer, D. Krüger, S. Baas, A. Velders, und J. Anders, „A broadband transceiver ASIC for X-nuclei NMR spectroscopy in 0.13 $\mu$m BiCMOS“, in 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), in 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS). IEEE, 2022, S. 65--69.
    3. F. Dreyer, D. Krüger, S. Baas, A. Velders, und J. Anders, „A broadband transceiver ASIC for X-nuclei NMR spectroscopy in 0.13 µm BiCMOS“, in 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), in 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS). IEEE, 2022, S. 65--69.
    4. F. Dreyer, Q. Yang, D. Krüger, und J. Anders, „A chip-based NMR relaxometry system for point-of-care analysis“, 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS), S. 183–187, 2022.
    5. T. Elrifai, A. Sakr, H. Lotfi, M. A. Hassan, K. Lips, und J. Anders, „A 7 GHz VCO-based EPR spectrometer incorporating a UWB data link“, in 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), in 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS). Juni 2022, S. 280–284. doi: 10.1109/NEWCAS52662.2022.9842254.
    6. H. S. Funk u. a., „Composition and magnetic properties of thin films grown by interdiffusion of Mn and Sn-Rich, Ge lattice matched SixGe1-x-ySny layers“, Journal of Magnetism and Magnetic Materials, Bd. 546, S. 168731, März 2022, doi: 10.1016/j.jmmm.2021.168731.
    7. M. A. Hassan u. a., „Towards single-cell pulsed EPR using VCO-based EPR-on-a-chip detectors“, Frequenz, Bd. 76, Nr. 11–12, Art. Nr. 11–12, 2022, doi: doi:10.1515/freq-2022-0096.
    8. K. Khan u. a., „A 12.2 to 14.9 GHz injection-locked VCO array with an on-chip 50 MHz BW semi-digital PLL for transient spin manipulation and detection“, in 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS), in 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS). Aug. 2022, S. 1–4. doi: 10.1109/MWSCAS54063.2022.9859288.
    9. H. Lotfi, M. A. Hassan, M. Kern, und J. Anders, „A Compact C-band EPR-on-a-chip Transceiver in 130-nm SiGe BiCMOS“, in 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), in 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME). Juni 2022, S. 157–160. doi: 10.1109/PRIME55000.2022.9816822.
    10. A. Mohamed, L. Baumgärtner, J. Zhao, D. Djekic, und J. Anders, „A current-mode Σ∆ modulator with FIR feedback and DC servo loop for an improved dynamic range“, in 2022 IEEE International Symposium on Circuits and Systems (ISCAS), in 2022 IEEE International Symposium on Circuits and Systems (ISCAS). 2022, S. 1–5.
    11. A. Mohamed, M. Wagner, H. Heidari, und J. Anders, „A frontend for magnetoresistive sensors with a 2.2 pA/√Hz low-noise current source“, IEEE Solid-State Circuits Letters, S. 1–1, 2022, doi: 10.1109/LSSC.2022.3148362.
    12. A. Mohamed und J. Anders, „An ultra-low-noise frontend for magnetoresistive sensors“, EUROPRACTICE activity report 2021 - 2022, S. 48–49, März 2022, [Online]. Verfügbar unter: https://europractice-ic.com/wp-content/uploads/2022/03/europractice_ar2021_web_150dpi.pdf
    13. A. Sakr, M. A. Hassan, K. Khan, M. Kern, und J. Anders, „A distributed amplitude control loop for VCO-array-based EPR-on-a-chip detectors“, in 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), in 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME). Juni 2022, S. 13–16. doi: 10.1109/PRIME55000.2022.9816840.
    14. Q. Yang, J. Zhao, F. Dreyer, D. Krüger, und J. Anders, „A portable NMR platform with arbitrary phase control and temperature compensation“, Magnetic Resonance, Bd. 3, Nr. 1, Art. Nr. 1, 2022.
    15. Q. Yang, J. Zhao, F. Dreyer, D. Krüger, und J. Anders, „A CMOS-based NMR platform with arbitrary phase control and temperature compensation“, Magnetic Resonance, Bd. 3, Nr. 1, Art. Nr. 1, 2022, doi: 10.5194/mr-3-77-2022.
    16. J. Zhao, Q. Yang, F. Dreyer, D. Krüger, F. Jelezko, und J. Anders, „A Broadband NMR Magnetometer System with Field Searching and Automatic Tuning Function“, IEEE Transactions on Instrumentation and Measurement, 2022, doi: 10.1109/TIM.2022.3222484.
  4. 2021

    1. J. Abella u. a., „Security, Reliability and Test Aspects of the RISC-V Ecosystem“, in 2021 IEEE European Test Symposium (ETS), in 2021 IEEE European Test Symposium (ETS). Mai 2021, S. 1–10. doi: 10.1109/ETS50041.2021.9465449.
    2. B. M. K. Alnajjar, A. Buchau, L. Baumgärtner, und J. Anders, „NMR magnets for portable applications using 3D printed materials“, Bd. 326, S. 106934, Mai 2021, doi: 10.1016/j.jmr.2021.106934.
    3. B. M. K. Alnajjar, A. Buchau, L. Baumgártner, und J. Anders, „NMR magnets for portable applications using 3D printed materials“, Journal of Magnetic Resonance, S. 106934, Feb. 2021, doi: 10.1016/j.jmr.2021.106934.
    4. J. Anders, „spins-to-go – Miniaturisierte magnetresonanzspektrometer Die Kernspinresonanzspektroskopie“, 2021, doi: 10.26125/HTFF-4J02.
    5. J. Anders, F. Dreyer, D. Krüger, I. Schwartz, M. B. Plenio, und F. Jelezko, „Progress in miniaturization and low-field nuclear magnetic resonance“, Journal of Magnetic Resonance, Bd. 322, S. 106860, 2021, doi: 10.1016/j.jmr.2020.106860.
    6. J. Anders, F. Dreyer, D. Krüger, I. Schwartz, M. B. Plenio, und F. Jelezko, „Progress in miniaturization and low-field nuclear magnetic resonance“, Bd. 322, S. 106860, Jan. 2021, doi: 10.1016/j.jmr.2020.106860.
    7. B. Blümich und J. Anders, „When the MOUSE leaves the house“, Bd. 2, Nr. 1, Art. Nr. 1, Apr. 2021, doi: 10.5194/mr-2-149-2021.
    8. A. Buchau, „ACCURACY ANALYSIS OF THE FAST MULTIPOLE METHOD FOR THREE-DIMENSIONAL BOUNDARY VALUE PROBLEMS BASED ON LAPLACE’S EQUATION“, in WIT Transactions on Engineering Sciences, A. H.-D. Cheng, Hrsg., in WIT Transactions on Engineering Sciences, vol. 131. WIT Press, Aug. 2021, S. 3–15. doi: 10.2495/be440011.
    9. H. Bürkle, T. Klotz, R. Krapf, und J. Anders, „A 0.1 MHz to 200 MHz high-voltage CMOS transceiver for portable NMR systems with a maximum output current of 2.0 A<inf>pp</inf>“, in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC). Sep. 2021, S. 327–330. doi: 10.1109/ESSCIRC53450.2021.9567823.
    10. Y. Chae, Y.-S. Shu, J. Anders, V. Schaffer, T. Oshima, und M. Corsi, „F2: Pushing the Frontiers in Accuracy for Data Converters and Analog Circuits“, in 2021 IEEE International Solid- State Circuits Conference (ISSCC), in 2021 IEEE International Solid- State Circuits Conference (ISSCC), vol. 64. Feb. 2021, S. 517–519. doi: 10.1109/ISSCC42613.2021.9365818.
    11. A. Chu u. a., „On the modeling of amplitude-sensitive electron spin resonance (ESR) detection using voltage-controlled oscillator (VCO)-based ESR-on-a-chip detectors“, Magnetic Resonance, Bd. 2, Nr. 2, Art. Nr. 2, Sep. 2021, doi: 10.5194/mr-2-699-2021.
    12. D. Djekic, M. Häberle, A. Mohamed, L. Baumgärtner, und J. Anders, „A 440-kOhm to 150-GOhm Tunable Transimpedance Amplifier Based on Multi-Element Pseudo-Resistors“, in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC). Sep. 2021, S. 1–4.
    13. F. Dreyer, D. Krüger, und J. Anders, „Breitbandiger Transceiver ASIC für heteronukleare NMR Spektroskopie“, in MikroSystemTechnik Kongress 2021, in MikroSystemTechnik Kongress 2021. VDE Verlag, 2021, S. 258–261.
    14. M. Elsobky, A. Mohamed, T. Deuble, J. Anders, und J. Burghartz, „A 12-to-15 b, 100-to-25 kS/s Resolution Reconfigurable, Power Scalable Incremental ADC using Ultra-Thin Chips“, IEEE Sensors Letters, S. 1–1, 2021, doi: 10.1109/LSENS.2021.3051259.
    15. A. V. Funes u. a., „Single Molecule Magnet Features in the Butterfly CoIII2LnIII2 Pivalate Family with Alcohol-Amine Ligands“, European Journal of Inorganic Chemistry, Bd. 2021, Nr. 31, Art. Nr. 31, 2021, doi: https://doi.org/10.1002/ejic.202100467.
    16. M. A. Hassan, T. Elrifai, A. Sakr, M. Kern, K. Lips, und J. Anders, „A 14-channel 7 GHz VCO-based EPR-on-a-chip sensor with rapid scan capabilities“, in 2021 IEEE Sensors, in 2021 IEEE Sensors. Okt. 2021, S. 1–4. doi: 10.1109/SENSORS47087.2021.9639513.
    17. D. Krüger, F. Dreyer, M. Kern, und J. Anders, „An S-band EPR-on-a-chip Receiver in 0.13 µm BiCMOS“, in 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), in 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). Nov. 2021, S. 1–5. doi: 10.1109/ICECS53924.2021.9665504.
    18. D. Krüger, F. Dreyer, M. Kern, und J. Anders, „An S-band EPR-on-a-chip Receiver in 0.13 μm BiCMOS“, in 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), in 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). IEEE, Nov. 2021, S. 1–5. doi: 10.1109/ICECS53924.2021.9665504.
    19. D. Krüger, F. Dreyer, M. Kern, und J. Anders, „An S-band EPR-on-a-chip Receiver in <tex>$0.13\,\mum$</tex> BiCMOS“, in 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), in 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). Nov. 2021, S. 1–5. doi: 10.1109/ICECS53924.2021.9665504.
    20. S. Künstner u. a., „Rapid-scan electron paramagnetic resonance using an EPR-on-a-Chip sensor“, Bd. 2, Nr. 2, Art. Nr. 2, Aug. 2021, doi: 10.5194/mr-2-673-2021.
    21. S. M. Leitao u. a., „Time-resolved scanning ion conductance microscopy for three-dimensional tracking of nanoscale cell surface dynamics“, bioRxiv, 2021, doi: 10.1101/2021.05.13.444009.
    22. A. Mohamed, D. Djekic, L. Baumgärtner, und J. Anders, „Noise-aware design methodology of ultra-low-noise transimpedance amplifiers“, in ICECS 2021 - 28th IEEE International Conference on Electronics Circuits and Systems (ICECS), in ICECS 2021 - 28th IEEE International Conference on Electronics Circuits and Systems (ICECS). Nov. 2021, S. 1–4.
    23. A. Mohamed, H. Heidari, und J. Anders, „A readout circuit for tunnel magnetoresistive sensors employing an ultra-low-noise current source“, in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC). Sep. 2021.
    24. A. Sakr, M. A. Hassan, und J. Anders, „A 93.1-dB SFDR, 90.3-dB DR, and 1-MS/s CT Incremental Sigma-Delta Modulator Incorporating a Resistive Dual-RTZ FIR DAC“, in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC). Sep. 2021, S. 211–214. doi: 10.1109/ESSCIRC53450.2021.9567762.
    25. L. Tesi u. a., „Plasmonic Metasurface Resonators to Enhance Terahertz Magnetic Fields for High-Frequency Electron Paramagnetic Resonance“, Small Methods, S. 2100376, Juli 2021, doi: 10.1002/smtd.202100376.
    26. D. Weißhaupt u. a., „Weak localization and weak antilocalization in doped Ge 1- y Sn y layers with up to 8% Sn“, Journal of Physics: Condensed Matter, Bd. 33, Nr. 8, Art. Nr. 8, 2021, doi: 10.1088/1361-648X/abcb68.
  5. 2020

    1. J. Anders, F. Dreyer, und D. Krüger, „On-Chip Nuclear Magnetic Resonance“, in Handbook of Biochips: Integrated Circuits and Systems for Biology and Medicine, M. Sawan, Hrsg., in Handbook of Biochips: Integrated Circuits and Systems for Biology and Medicine. , New York, NY: Springer New York, 2020, S. 1--32. doi: 10.1007/978-1-4614-6623-9_23-1.
    2. M. Brunet Cabré, D. Djekic, T. Romano, N. Hanna, J. Anders, und K. McKelvey, „Microscale Electrochemical Cell on a Custom CMOS Transimpedance Amplifier for High Temporal Resolution Single Entity Electrochemistry**“, ChemElectroChem, Bd. 7, Nr. 23, Art. Nr. 23, 2020, doi: https://doi.org/10.1002/celc.202001083.
    3. M. Brunet Cabré, D. Djekic, T. Romano, N. Hanna, J. Anders, und K. McKelvey, „Cover Feature: Microscale Electrochemical Cell on a Custom CMOS Transimpedance Amplifier for High Temporal Resolution Single Entity Electrochemistry (ChemElectroChem 23/2020)“, ChemElectroChem, Bd. 7, Nr. 23, Art. Nr. 23, 2020, doi: https://doi.org/10.1002/celc.202001360.
    4. H. Bürkle, K. Schmid, T. Klotz, R. Krapf, und J. Anders, „A High Voltage CMOS Transceiver for Low-Field NMR with a Maximum Output Current of 1.4 App“, in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), in 2020 IEEE International Symposium on Circuits and Systems (ISCAS). Okt. 2020, S. 1–5. doi: 10.1109/ISCAS45731.2020.9181025.
    5. H. Bürkle, K. Schmid, T. Klotz, R. Krapf, und J. Anders, „A High Voltage CMOS Transceiver for Low-Field NMR with a Maximum Output Current of 1.4 A<inf>pp</inf>“, in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), in 2020 IEEE International Symposium on Circuits and Systems (ISCAS). Okt. 2020, S. 1–5. doi: 10.1109/ISCAS45731.2020.9181025.
    6. M. Eder u. a., „A Signal Acquisition Setup for Ultrashort Echo Time Imaging Operating in Parallel on Unmodified Clinical MRI Scanners Achieving an Acquisition Delay of  $3~\mus$“, IEEE Transactions on Medical Imaging, Bd. 39, Nr. 1, Art. Nr. 1, Jan. 2020, doi: 10.1109/TMI.2019.2924057.
    7. L. Gohlke, F. Dreyer, M. P. Álvarez, und J. Anders, „An IoT based low-cost heart rate measurement system employing PPG sensors“, in 2020 IEEE SENSORS, in 2020 IEEE SENSORS. Okt. 2020, S. 1–4. doi: 10.1109/SENSORS47125.2020.9278844.
    8. L. Gohlke, F. Dreyer, M. P. Alvarez, und J. Anders, „An IoT based low-cost heart rate measurement system employing PPG sensors“, in 2020 IEEE Sensors, in 2020 IEEE Sensors. IEEE, 2020, S. 1--4. doi: 10.1109/SENSORS47125.2020.9278844.
    9. M. Kern u. a., „Hybrid Spintronic Materials from Conducting Polymers with Molecular Quantum Bits“, Advanced Functional Materials, 2020, doi: 10.1002/adfm.202006882.
    10. A. Mohamed und J. Anders, „Stability Analysis of Incremental ΣΔ Modulators using Mixed-Logic Dynamical Systems and Optimal Control Theory“, in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), in 2020 IEEE International Symposium on Circuits and Systems (ISCAS). Okt. 2020, S. 1–5. doi: 10.1109/ISCAS45731.2020.9180952.
    11. A. Mohamed, M. Schmid, A. Tanwear, H. Heidari, und J. Anders, „A Low Noise CMOS Sensor Frontend for a TMR-based Biosensing Platform“, in 2020 IEEE SENSORS Conference, in 2020 IEEE SENSORS Conference. Okt. 2020.
    12. D. Neusser, C. Malacrida, M. Kern, Y. M. Gross, J. van Slageren, und S. Ludwigs, „High Conductivities of Disordered P3HT Films by an Electrochemical Doping Strategy“, Chemistry of Materials, Bd. 32, Nr. 14, Art. Nr. 14, Juli 2020, doi: 10.1021/acs.chemmater.0c01293.
    13. I. Polian u. a., „Exploring the mysteries of system-level test.“, in to appear in Proceedings of the 29th IEEE Asian Test Symposium (ATS’20), in to appear in Proceedings of the 29th IEEE Asian Test Symposium (ATS’20). Nov. 2020.
    14. J. Zhao, A. Mohamed, und J. Anders, „An Active CMOS NMR Field Probe with Custom Transceiver and ΣΔ Modulator ASICs and an Optical Link“, in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), in 2020 IEEE International Symposium on Circuits and Systems (ISCAS). Okt. 2020, S. 1–5. doi: 10.1109/ISCAS45731.2020.9181026.
  6. 2019

    1. B. M. K. Alnajjar, A. Buchau, J. Anders, und B. Blümich, „An H-shaped low-field magnet for NMR spectroscopy designed using the finite element method“, International Journal of Applied Electromagnetics and Mechanics, Bd. 60, S. S3–S14, Mai 2019, doi: 10.3233/JAE-191101.
    2. J. Anders und K. Lips, „MR to go“, Journal of Magnetic Resonance, Bd. 306, S. 118–123, 2019, doi: 10.1016/j.jmr.2019.07.007.
    3. A. Buchau, „Precise and Robust Magnetic Field Computations for High-End Smart Sensor Applications“, in Boundary Elements and other Mesh Reduction Methods XLII, in Boundary Elements and other Mesh Reduction Methods XLII. WIT Press, Southampton UK, Sep. 2019. doi: 10.2495/be420071.
    4. H. Elmar, K. Leonhard, und K. M. K. U. Hassan, „Digital-Analog-Umsetzer mit in Reihe geschalteten Kapazitäten“, DE: 10 2018 206 453.9, 2019
    5. M. Eschelbach u. a., „Comparison of prospective head motion correction with NMR field probes and an optical tracking system“, Magnetic Resonance in Medicine, Bd. 81, Nr. 1, Art. Nr. 1, 2019, doi: 10.1002/mrm.27343.
    6. J. Handwerker u. a., „A CMOS NMR needle for probing brain physiology with high spatial and temporal resolution“, Nature Methods, Bd. 17, Nr. 1, Art. Nr. 1, Nov. 2019, doi: 10.1038/s41592-019-0640-3.
    7. H. Heidari, P. Mak, J. Anders, und D. Hall, „Guest Editorial Special Issue on Magnetic Sensing Systems for Biomedical Application“, IEEE Sensors Journal, Bd. 19, Nr. 20, Art. Nr. 20, Okt. 2019, doi: 10.1109/JSEN.2019.2929887.
    8. A. Horneff u. a., „A New CMOS Broadband, High Impedance LNA for MRI Achieving an Input Referred Voltage Noise Spectral Density of 200pV/Hz√“, in 2019 IEEE International Symposium on Circuits and Systems (ISCAS), in 2019 IEEE International Symposium on Circuits and Systems (ISCAS). Mai 2019, S. 1–5. doi: 10.1109/ISCAS.2019.8702445.
    9. J. Hrubý u. a., „A graphene-based hybrid material with quantum bits prepared by the double Langmuir–Schaefer method“, RSC Adv., Bd. 9, Nr. 42, Art. Nr. 42, 2019, doi: 10.1039/C9RA04537F.
    10. M. Häberle u. a., „Comparison of Different Precision Pseudo Resistor Realizations in the DC-Feedback of Capacitive Transimpedance Amplifiers“, in 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), in 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS). Nov. 2019, S. 699–702. doi: 10.1109/ICECS46596.2019.8965196.
    11. A. Köllner u. a., „A 2x2 Pixel Array Camera based on a Backside Illuminated Ge-on-Si Photodetector“, in 2019 IEEE SENSORS, in 2019 IEEE SENSORS. Okt. 2019, S. 1–4. doi: 10.1109/SENSORS43011.2019.8956731.
    12. P. Lu u. a., „Introduction to the Special Issue on the 2019 IEEE European Solid-State Circuits Conference (ESSCIRC)“, IEEE Solid-State Circuits Letters, Bd. 2, Nr. 9, Art. Nr. 9, Sep. 2019, doi: 10.1109/LSSC.2019.2944716.
    13. R. Magnall u. a., „Photolytic and Reductive Activations of 2-Arsaethynolate in a Uranium–Triamidoamine Complex: Decarbonylative Arsenic-Group Transfer Reactions and Trapping of a Highly Bent and Reduced Form“, Chemistry - A European Journal, Bd. 25, Nr. 62, Art. Nr. 62, 2019, doi: 10.1002/chem.201903973.
    14. A. Mohamed, A. Sakr, und J. Anders, „FIR Feedback in Continuous- Time Incremental Sigma-Delta ADCs“, in 2019 17th IEEE International New Circuits and Systems Conference (NEWCAS), in 2019 17th IEEE International New Circuits and Systems Conference (NEWCAS). Juni 2019, S. 1–4. doi: 10.1109/NEWCAS44328.2019.8961214.
    15. B. Schlecker, A. Hoffmann, A. Chu, M. Ortmanns, K. Lips, und J. Anders, „Towards Low-Cost, High-Sensitivity Point-of-Care Diagnostics Using VCO-Based ESR-on-a-Chip Detectors“, IEEE Sensors Journal, Bd. 19, Nr. 20, Art. Nr. 20, Okt. 2019, doi: 10.1109/JSEN.2018.2875767.
    16. M. Spiess, A. Buchau, und J. Anders, „Precision finite element method simulations of a chip-integrated magnetic resonance coil for in-situ MR applications“, in 2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG), in 2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG). Juli 2019, S. 1–4. doi: 10.1109/COMPUMAG45669.2019.9032724.
  7. 2018

    1. A. AlMarashli, J. Anders, J. Becker, und M. Ortmanns, „A Nyquist Rate SAR ADC Employing Incremental Sigma Delta DAC Achieving Peak SFDR = 107 dB at 80 kS/s“, IEEE Journal of Solid-State Circuits, Bd. 53, Nr. 5, Art. Nr. 5, Mai 2018, doi: 10.1109/JSSC.2017.2776299.
    2. S. Bader, M. Ortmanns, und J. Anders, „Nonlinear Energy-Efficient Noise-Aware Design of CMOS LC Tank Oscillators“, 2018 Ieee International Symposium on Circuits and Systems (Iscas), 2018, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000451218703083
    3. S. Bechler u. a., „Formation of Mn5Ge3 by thermal annealing of evaporated Mn on doped Ge on Si(111)“, Semiconductor Science and Technology, Bd. 33, Nr. 9, Art. Nr. 9, 2018, doi: 10.1088/1361-6641/aad4cf.
    4. A. Buchau und M. Jüttner, „A concept of separated numerical formulations for the solution and evaluation of complex field problems“, International Journal of Computational Methods and Experimental Measurements, Bd. 6, Nr. 6, Art. Nr. 6, Jan. 2018, doi: 10.2495/cmem-v6-n6-1008-1018.
    5. A. Chu, B. Schlecker, K. Lips, M. Ortmanns, und J. Anders, „An 8-channel 13GHz ESR-on-a-Chip injection-locked vco-array achieving 200μM-concentration sensitivity“, in 2018 IEEE International Solid - State Circuits Conference - (ISSCC), in 2018 IEEE International Solid - State Circuits Conference - (ISSCC). Feb. 2018, S. 354–356. doi: 10.1109/ISSCC.2018.8310330.
    6. D. Djekic, G. Fantner, K. Lips, M. Ortmanns, und J. Anders, „A 0.1% THD, 1-M $Ømega$  to 1-G $Ømega$  Tunable, Temperature-Compensated Transimpedance Amplifier Using a Multi-Element Pseudo-Resistor“, IEEE Journal of Solid-State Circuits, Bd. 53, Nr. 7, Art. Nr. 7, Juli 2018, doi: 10.1109/JSSC.2018.2820701.
    7. S. Grabmaier, M. Jüttner, und W. Rucker, „Coupling of finite element method and integral formulation for vector Helmholtz equation“, Compel : international journal for computation and mathematics in electrical and electronic engineering, Bd. 37, Nr. 4, SI, Art. Nr. 4, SI, 2018, doi: 10.1108/COMPEL-08-2017-0346.
    8. M. Haberle, D. Djekic, G. E. Fantner, K. Lips, M. Ortmanns, und J. Anders, „An integrator-differentiator TIA using a multi-element pseudo-resistor in its DC servo loop for enhanced noise performance“, Esscirc 2018 - Ieee 44th European Solid State Circuits Conference (Esscirc), S. 294–297, 2018, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000448159800077
    9. A. Horneff u. a., „An EM Simulation-Based Design Flow for Custom-Built MR Coils Incorporating Signal and Noise“, IEEE Transactions on Medical Imaging, Bd. 37, Nr. 2, Art. Nr. 2, Feb. 2018, doi: 10.1109/TMI.2017.2764160.
    10. M. Häberle, D. Djekic, G. E. Fantner, K. Lips, M. Ortmanns, und J. Anders, „An Integrator-Differentiator TIA Using a Multi-Element Pseudo-Resistor in its DC Servo Loop for Enhanced Noise Performance“, in ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC), in ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC). Sep. 2018, S. 294–297. doi: 10.1109/ESSCIRC.2018.8494290.
    11. F. Moro u. a., „Room Temperature Uniaxial Magnetic Anisotropy Induced By Fe-Islands in the InSe Semiconductor Van Der Waals Crystal“, Advanced Science, Bd. 5, Nr. 7, Art. Nr. 7, 2018, doi: 10.1002/advs.201800257.
    12. P. Neugebauer u. a., „Ultra-broadband EPR spectroscopy in field and frequency domains“, Phys. Chem. Chem. Phys., Bd. 20, Nr. 22, Art. Nr. 22, 2018, doi: 10.1039/C7CP07443C.
    13. M. Rajabzadeh, D. Djekic, M. Haeberle, J. Becker, J. Anders, und M. Ortmanns, „Comparison Study of Integrated Potentiostats: Resistive-TIA, Capacitive-TIA, CT Sigma Delta Modulator“, 2018 Ieee International Symposium on Circuits and Systems (Iscas), 2018, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000451218700141
    14. M. Rajabzadeh, D. Djekic, M. Haeberle, J. Becker, J. Anders, und M. Ortmanns, „Comparison Study of Integrated Potentiostats: Resistive-TIA, Capacitive-TIA, CT ΣΔ Modulator“, in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), in 2018 IEEE International Symposium on Circuits and Systems (ISCAS). Mai 2018, S. 1–5. doi: 10.1109/ISCAS.2018.8351029.
    15. D. Vögeli, S. Grabmaier, M. Jüttner, M. Weyrich, P. Göhner, und W. M. Rucker, „Intelligent and Distributed Solving of Multiphysics Problems Coordinated by Software Agents - An Intelligent Approach for Decentralized Simulations“, in Proceedings of the 10th International Conference on Agents and Artificial Intelligence, in Proceedings of the 10th International Conference on Agents and Artificial Intelligence, vol. 1. SCITEPRESS - Science and Technology Publications, 2018, S. 200–207. doi: 10.5220/0006590402000207.
    16. P. Zhang u. a., „Exchange coupling and single molecule magnetism in redox-active tetraoxolene-bridged dilanthanide complexes“, Chem. Sci., Bd. 9, Nr. 5, Art. Nr. 5, 2018, doi: 10.1039/C7SC04873D.
    17. A. Øwre, M. Vinum, M. Kern, J. van Slageren, J. Bendix, und M. Perfetti, „Chiral, Heterometallic Lanthanide–Transition Metal Complexes by Design“, Inorganics, Bd. 6, Nr. 3, Art. Nr. 3, Juli 2018, doi: 10.3390/inorganics6030072.
  8. 2017

    1. A. AlMarashli, J. Anders, J. Becker, und M. Ortmanns, „A 107 dB SFDR, 80 kS/s Nyquist-rate SAR ADC using a hybrid capacitive and incremental ΣΔ DAC“, in 2017 Symposium on VLSI Circuits, in 2017 Symposium on VLSI Circuits. Juni 2017, S. C240–C241. doi: 10.23919/VLSIC.2017.8008494.
    2. A. AlMarashli, J. Anders, J. Becker, und M. Ortmanns, „A 107 dB SFDR, 80 kS/s Nyquist-rate SAR ADC using a hybrid capacitive and incremental Sigma Delta DAC“, 2017 Symposium on Vlsi Circuits, S. C240–C241, 2017, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000428759000093
    3. J. Anders u. a., „A-245 dB FOM 48 fs rms jitter semi-digital PLL with intrinsic temperature compensation in 130 nm CMOS“, 2017 Ieee Asian Solid-State Circuits Conference (a-Sscc), S. 325–328, 2017, [Online]. Verfügbar unter: /brokenurl#<Go to ISI>://WOS:000426511300082

Jens Anders erhielt den MSc Abschluss von der University of Michigan, Ann Arbor sowie den Dipl.-Ing. von der Leibniz Universität Hannover jeweils in Elektrotechnik in den Jahren 2005 bzw. 2007. Im Jahr 2011 erhielt er den Doktorgrad von der École polytechnique fédérale de Lausanne (EPFL).

Von 2013 bis 2017 war er Juniorprofessor für biomedizinische integrierte Sensoren am Institut für Mikroelektronik der Universität Ulm. Er ist derzeit Inhaber des Lehrstuhls für Elektrotechnik Bionischer System und Direktor des Instituts für Intelligente Sensorik und Theoretische Elektrotechnik an der Universität Stuttgart. Seit Oktober 2022 ist er ebenfalls Co-Direktor des Instituts für Mikroelektronik Stuttgart (IMS HCIPS).

Prof. Anders ist Autor mehrerer Bücher bzw. Buchkapitel sowie von mehr als 150 Zeitschriftenartikeln und Konferenzbeiträgen.

Seine derzeitigen Forschungsinteressen liegen im Bereich der Untersuchung von Multiphysikproblemen sowie des Entwurfs integrierter Schaltungen für Sensorikanwendungen. Dabei liegt ein besonderer Fokus auf der Quantensensorik für die Material- und Lebenswissenschaften.

Prof. Anders ist Fellow des “Center for Integrated Quantum Science and Technology (IQST, https://www.iqst.org), Fellow des “Stuttgart Research Center of Photonic Engineering” (SCoPE, https://www.scope.uni-stuttgart.de/) und Mitglied des Executive Boards des Carl-Zeiss-Stiftung Center for Quantum Photonics (QPhoton, https://www.acp.uni-jena.de/qphoton).

Er war bzw. ist Mitglied verschiedener technischer Programmausschüsse von Tagungen, u.a. bei der ISSCC, der ESSDERC und ESSCIRC sowie der IEEE Sensors. Im Jahre 2003 erhielt er den Preis des Präsidenten der Leibniz Universität Hannover, 2006 den Preis des VDE Bezirksverbands Hannover, 2007 den E.ON Future Award, 2008 den VDE ITG ISS Studienpreis, 2012 den Literaturpreis der ITG im VDE, 2017 den „Best Live Demo Award“ bei der IEEE Sensors sowie einen der Sony Europe Research Awards 2021.

Zum Seitenanfang