This image shows Jens Anders

Jens Anders

Prof. Dr.

Institute Director
Institute of Smart Sensors

Contact

+49 711 685 67250
+4971168567222

Pfaffenwaldring 47
70569 Stuttgart
Deutschland
Room: 3.114

Office Hours

By appointment

Please contact Bärbel Groß

Journals, conferences, and books:
  1. 2022

    1. A. Buchau and J. Anders, “CHARACTERIZATION OF VECTOR FIELDS BASED ON AN ANALYSIS OF THEIR LOCAL EXPANSIONS,” in WIT Transactions on Engineering Sciences, Aug. 2022, vol. 134, pp. 17–29. doi: 10.2495/be450021.
    2. F. Dreyer, Q. Yang, D. Krüger, and J. Anders, “A chip-based NMR relaxometry system for point-of-care analysis,” 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 183–187, 2022.
    3. F. Dreyer, D. Krüger, S. Baas, A. Velders, and J. Anders, “A broadband transceiver ASIC for X-nuclei NMR spectroscopy in 0.13 $\mu$m BiCMOS,” in 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), 2022, pp. 65--69.
    4. F. Dreyer, D. Krüger, S. Baas, A. Velders, and J. Anders, “A broadband transceiver ASIC for X-nuclei NMR spectroscopy in 0.13 µm BiCMOS,” in 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), 2022, pp. 65--69.
    5. T. Elrifai, A. Sakr, H. Lotfi, M. A. Hassan, K. Lips, and J. Anders, “A 7 GHz VCO-based EPR spectrometer incorporating a UWB data link,” in 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), Jun. 2022, pp. 280–284. doi: 10.1109/NEWCAS52662.2022.9842254.
    6. A. Mohamed and J. Anders, “An ultra-low-noise frontend for magnetoresistive sensors,” EUROPRACTICE activity report 2021 - 2022, pp. 48–49, Mar. 2022, [Online]. Available: https://europractice-ic.com/wp-content/uploads/2022/03/europractice_ar2021_web_150dpi.pdf
    7. A. Sakr, M. A. Hassan, K. Khan, M. Kern, and J. Anders, “A distributed amplitude control loop for VCO-array-based EPR-on-a-chip detectors,” in 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), Jun. 2022, pp. 13–16. doi: 10.1109/PRIME55000.2022.9816840.
    8. Q. Yang, J. Zhao, F. Dreyer, D. Krüger, and J. Anders, “A CMOS-based NMR platform with arbitrary phase control and temperature compensation,” Magnetic Resonance, vol. 3, no. 1, Art. no. 1, 2022, doi: 10.5194/mr-3-77-2022.
    9. J. Zhao, Q. Yang, F. Dreyer, D. Krüger, F. Jelezko, and J. Anders, “A Broadband NMR Magnetometer System with Field Searching and Automatic Tuning Function,” IEEE Transactions on Instrumentation and Measurement, 2022, doi: 10.1109/TIM.2022.3222484.
  2. 2021

    1. J. Abella et al., “Security, Reliability and Test Aspects of the RISC-V Ecosystem,” in 2021 IEEE European Test Symposium (ETS), May 2021, pp. 1–10. doi: 10.1109/ETS50041.2021.9465449.
    2. B. M. K. Alnajjar, A. Buchau, L. Baumgártner, and J. Anders, “NMR magnets for portable applications using 3D printed materials,” Journal of Magnetic Resonance, p. 106934, Feb. 2021, doi: 10.1016/j.jmr.2021.106934.
    3. B. M. K. Alnajjar, A. Buchau, L. Baumgärtner, and J. Anders, “NMR magnets for portable applications using 3D printed materials,” vol. 326, p. 106934, May 2021, doi: 10.1016/j.jmr.2021.106934.
    4. J. Anders, F. Dreyer, D. Krüger, I. Schwartz, M. B. Plenio, and F. Jelezko, “Progress in miniaturization and low-field nuclear magnetic resonance,” Journal of Magnetic Resonance, vol. 322, p. 106860, 2021, doi: 10.1016/j.jmr.2020.106860.
    5. J. Anders, F. Dreyer, D. Krüger, I. Schwartz, M. B. Plenio, and F. Jelezko, “Progress in miniaturization and low-field nuclear magnetic resonance,” vol. 322, p. 106860, Jan. 2021, doi: 10.1016/j.jmr.2020.106860.
    6. J. Anders, “spins-to-go – Miniaturisierte magnetresonanzspektrometer Die Kernspinresonanzspektroskopie,” 2021, doi: 10.26125/HTFF-4J02.
    7. B. Blümich and J. Anders, “When the MOUSE leaves the house,” vol. 2, no. 1, Art. no. 1, Apr. 2021, doi: 10.5194/mr-2-149-2021.
    8. H. Bürkle, T. Klotz, R. Krapf, and J. Anders, “A 0.1 MHz to 200 MHz high-voltage CMOS transceiver for portable NMR systems with a maximum output current of 2.0 A<inf>pp</inf>,” in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), Sep. 2021, pp. 327–330. doi: 10.1109/ESSCIRC53450.2021.9567823.
    9. Y. Chae, Y.-S. Shu, J. Anders, V. Schaffer, T. Oshima, and M. Corsi, “F2: Pushing the Frontiers in Accuracy for Data Converters and Analog Circuits,” in 2021 IEEE International Solid- State Circuits Conference (ISSCC), Feb. 2021, vol. 64, pp. 517–519. doi: 10.1109/ISSCC42613.2021.9365818.
    10. A. Chu et al., “On the modeling of amplitude-sensitive electron spin resonance (ESR) detection using voltage-controlled oscillator (VCO)-based ESR-on-a-chip detectors,” vol. 2, no. 2, Art. no. 2, Sep. 2021, doi: 10.5194/mr-2-699-2021.
    11. D. Djekic, M. Häberle, A. Mohamed, L. Baumgärtner, and J. Anders, “A 440-kOhm to 150-GOhm Tunable Transimpedance Amplifier based on Multi-Element Pseudo-Resistors,” in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), Sep. 2021, pp. 403–406. doi: 10.1109/ESSCIRC53450.2021.9567831.
    12. F. Dreyer, D. Krüger, and J. Anders, “Breitbandiger Transceiver ASIC für heteronukleare NMRSpektroskopie,” in MikroSystemTechnik Kongress 2021, 2021, pp. 258–261.
    13. M. Elsobky, A. Mohamed, T. Deuble, J. Anders, and J. N. Burghartz, “A 12-to-15 b, 100-to-25 kS/s Resolution Reconfigurable, Power Scalable Incremental ADC Using Ultrathin Chips,” IEEE Sensors Letters, vol. 5, no. 2, Art. no. 2, Feb. 2021, doi: 10.1109/LSENS.2021.3051259.
    14. M. A. Hassan, T. Elrifai, A. Sakr, M. Kern, K. Lips, and J. Anders, “A 14-channel 7 GHz VCO-based EPR-on-a-chip sensor with rapid scan capabilities,” in 2021 IEEE Sensors, Oct. 2021, pp. 1–4. doi: 10.1109/SENSORS47087.2021.9639513.
    15. D. Krüger, F. Dreyer, M. Kern, and J. Anders, “An S-band EPR-on-a-chip Receiver in 0.13 µm BiCMOS,” in 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), Nov. 2021, pp. 1–5. doi: 10.1109/ICECS53924.2021.9665504.
    16. D. Krüger, F. Dreyer, M. Kern, and J. Anders, “An S-band EPR-on-a-chip Receiver in <tex>$0.13\,\mum$</tex> BiCMOS,” in 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), Nov. 2021, pp. 1–5. doi: 10.1109/ICECS53924.2021.9665504.
    17. S. Künstner et al., “Rapid-scan electron paramagnetic resonance using an EPR-on-a-Chip sensor,” vol. 2, no. 2, Art. no. 2, Aug. 2021, doi: 10.5194/mr-2-673-2021.
    18. S. M. Leitao et al., “Time-resolved scanning ion conductance microscopy for three-dimensional tracking of nanoscale cell surface dynamics,” bioRxiv, 2021, doi: 10.1101/2021.05.13.444009.
    19. A. Mohamed, H. Heidari, and J. Anders, “A readout circuit for tunnel magnetoresistive sensors employing an ultra-low-noise current source,” in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), Sep. 2021, pp. 331–334. doi: 10.1109/ESSCIRC53450.2021.9567752.
    20. A. Sakr, M. A. Hassan, and J. Anders, “A 93.1-dB SFDR, 90.3-dB DR, and 1-MS/s CT Incremental Sigma-Delta Modulator Incorporating a Resistive Dual-RTZ FIR DAC,” in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), Sep. 2021, pp. 211–214. doi: 10.1109/ESSCIRC53450.2021.9567762.
  3. 2020

    1. J. Anders, F. Dreyer, and D. Krüger, “On-Chip Nuclear Magnetic Resonance,” in Handbook of Biochips: Integrated Circuits and Systems for Biology and Medicine, M. Sawan, Ed. New York, NY: Springer New York, 2020, pp. 1--32. doi: 10.1007/978-1-4614-6623-9_23-1.
    2. M. Brunet Cabré, D. Djekic, T. Romano, N. Hanna, J. Anders, and K. McKelvey, “Cover Feature: Microscale Electrochemical Cell on a Custom CMOS Transimpedance Amplifier for High Temporal Resolution Single Entity Electrochemistry (ChemElectroChem 23/2020),” ChemElectroChem, vol. 7, no. 23, Art. no. 23, 2020, doi: https://doi.org/10.1002/celc.202001360.
    3. M. Brunet Cabré, D. Djekic, T. Romano, N. Hanna, J. Anders, and K. McKelvey, “Microscale Electrochemical Cell on a Custom CMOS Transimpedance Amplifier for High Temporal Resolution Single Entity Electrochemistry**,” ChemElectroChem, vol. 7, no. 23, Art. no. 23, 2020, doi: https://doi.org/10.1002/celc.202001083.
    4. H. Bürkle, K. Schmid, T. Klotz, R. Krapf, and J. Anders, “A High Voltage CMOS Transceiver for Low-Field NMR with a Maximum Output Current of 1.4 A<inf>pp</inf>,” in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Oct. 2020, pp. 1–5. doi: 10.1109/ISCAS45731.2020.9181025.
    5. L. Gohlke, F. Dreyer, M. P. Alvarez, and J. Anders, “An IoT based low-cost heart rate measurement system employing PPG sensors,” in 2020 IEEE Sensors, 2020, pp. 1--4. doi: 10.1109/SENSORS47125.2020.9278844.
    6. L. Gohlke, F. Dreyer, M. P. Álvarez, and J. Anders, “An IoT based low-cost heart rate measurement system employing PPG sensors,” in 2020 IEEE SENSORS, Oct. 2020, pp. 1–4. doi: 10.1109/SENSORS47125.2020.9278844.
    7. A. Mohamed and J. Anders, “Stability Analysis of Incremental ΣΔ Modulators using Mixed-Logic Dynamical Systems and Optimal Control Theory,” in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Oct. 2020, pp. 1–5. doi: 10.1109/ISCAS45731.2020.9180952.
    8. A. Mohamed, M. Schmid, A. Tanwear, H. Heidari, and J. Anders, “A Low Noise CMOS Sensor Frontend for a TMR-based Biosensing Platform,” in 2020 IEEE SENSORS, Oct. 2020, pp. 1–4. doi: 10.1109/SENSORS47125.2020.9278826.
    9. I. Polian et al., “Exploring the Mysteries of System-Level Test,” in 2020 IEEE 29th Asian Test Symposium (ATS), Nov. 2020, pp. 1–6. doi: 10.1109/ATS49688.2020.9301557.
    10. J. Zhao, A. Mohamed, and J. Anders, “An Active CMOS NMR Field Probe with Custom Transceiver and ΣΔ Modulator ASICs and an Optical Link,” in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Oct. 2020, pp. 1–5. doi: 10.1109/ISCAS45731.2020.9181026.
  4. 2019

    1. B. M. K. Alnajjar, A. Buchau, J. Anders, and B. Blümich, “An H-shaped low-field magnet for NMR spectroscopy designed using the finite element method,” International Journal of Applied Electromagnetics and Mechanics, vol. 60, pp. S3–S14, May 2019, doi: 10.3233/JAE-191101.
    2. M. Eschelbach et al., “Comparison of prospective head motion correction with NMR field probes and an optical tracking system,” Magnetic Resonance in Medicine, vol. 81, no. 1, Art. no. 1, 2019, doi: 10.1002/mrm.27343.
    3. J. Handwerker et al., “A CMOS NMR needle for probing brain physiology with high spatial and temporal resolution,” Nature Methods, vol. 17, no. 1, Art. no. 1, Nov. 2019, doi: 10.1038/s41592-019-0640-3.
    4. M. Spiess, A. Buchau, and J. Anders, “Precision finite element method simulations of a chip-integrated magnetic resonance coil for in-situ MR applications,” Jul. 2019. doi: 10.1109/compumag45669.2019.9032724.

Jens Anders received the master’s degree from the University of Michigan, Ann Arbor, MI, USA, in 2005, the Dipl.-Ing. degree from the Leibniz University of Hannover in 2007, and the Ph.D. degree from the École polytechnique fédérale de Lausanne in 2011.

From 2013 to 2017, he was an Assistant Professor of biomedical integrated sensors with the Institute of Microelectronics at the University of Ulm. Dr. Anders is currently a Full Professor and the Director of the Institute of Smart Sensors at the University of Stuttgart. He has authored or co-authored several books and book chapters as well as approximately 100 journal and conference papers.

His current research interests include multiphysics problems and circuit design for sensing applications, including materials science as well as biomedical and quantum sensing.

He is a fellow of the “Center for Integrated Quantum Science and Technology” (IQST, https://www.iqst.org) and the “Stuttgart Research Center of Photonic Engineering” (SCoPE, https://www.scope.uni-stuttgart.de/).

Dr. Anders served/is serving as a Program Committee Member of ISSCC,  ESSCIRC, ESSDERC and the IEEE Sensors conference. He received the 2003 President’s Award of the Leibniz University of Hannover, the 2006 Best Thesis Award of the VDE Chapter Hannover, the E.ON Future Award 2007, the VDE ITG ISS Study Award 2008, the VDE ITG Outstanding Publication Award 2012, the ICBME 2008 Outstanding Paper Award, and the IEEE Sensors 2017 Best Live Demo Award.

To the top of the page