May 14, 2019 /

XX International Symposium on Theoretical Electrical Engineering (ISTET-2019)

Prof. Anders gives a plenary lecture at the XX International Symposium on Theoretical Electrical Engineering (ISTET-2019) in Sofia

Integrated quantum sensors as a new challenging problem in theoretical electrical engineering

Abstract: Quantum technologies offer numerous opportunities for new applications in industry and society, covering a large number of different disciplines ranging from quantum information technology over quantum sensing to the quantum simulation of complex system. New quantum sensors are measuring the magnetic fields of the neuronal currents in the human brain, which will help us to better understand diseases such as Alzheimer‘s or Parkinson‘s. Moreover, quantum-based gyroscopes can complement or replace the currently used MEMS systems, and high-precision quantum simulations can help bringing new drugs or materials to market much faster and at greatly lower costs.

In this talk, we will investigate the possibilities associated with integrating quantum sensors into compact smart sensors systems in order to increase greatly their potential application scenarios. Here, we will focus on the modeling challenges associated with hybrid systems consisting of quantum sensors and conventional integrated circuit and packaging technologies, discussing how the multiphysics and advanced modeling aspects of future smart quantum sensors are crucial for their performance.

To this end, we will discuss examples of biomedical quantum sensors that greatly benefit from the embedding of the interface electronics for enhanced performance. It will be discussed how an advanced modeling of the sensor together with a precise modeling of the interface electronics as nonlinear dynamical system can be used for co-designing sensor and electronics to improve the overall system performance. Finally, we will talk about the challenges in numerical simulations of such advanced sensor systems, which arise from the immense precision (often precisions of 10-9 or better are required) that is frequently required in the scientific context.


Jens Anders
Prof. Dr.

Jens Anders

Institute Director

To the top of the page